
Signal Processing Blockset 6
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Signal Processing Blockset User’s Guide

© COPYRIGHT 1995–2007 The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
April 1995 First printing Version 1.0
May 1997 Second printing Version 2.0
January 1998 Third printing Version 2.2 (Release 10)
January 1999 Fourth printing Version 3.0 (Release 11)
November 2000 Fifth printing Version 4.0 (Release 12)
June 2001 Online only Version 4.1 (Release 12.1)
July 2002 Sixth printing Version 5.0 (Release 13)
April 2003 Seventh printing Version 5.1 (Release 13SP1)
June 2004 Online only Version 6.0 (Release 14) (Renamed from DSP Blockset

User’s Guide)
October 2004 Online only Version 6.0.1 (Release 14SP1)
March 2005 Online only Version 6.1 (Release 14SP2)
September 2005 Online only Version 6.2 (Release 14SP3)
March 2006 Online only Version 6.3 (Release 2006a)
September 2006 Online only Version 6.4 (Release 2006b)
March 2007 Online only Version 6.5 (Release 2007a)

Contents

Working with Signals

1
Discrete-Time Signals . 1-3

Time and Frequency Terminology . 1-3
Recommended Settings for Discrete-Time Simulations . . . 1-5
Other Settings for Discrete-Time Simulations 1-7

Continuous-Time Signals . 1-11
Continuous-Time Source Blocks . 1-11
Continuous-Time Nonsource Blocks 1-12

Sample-Based Signals . 1-13
Sample-Based Single Channel Signals 1-13
Sample-Based Multichannel Signals 1-13

Frame-Based Signals . 1-15
Frame-Based Single Channel Signals 1-15
Frame-Based Multichannel Signals 1-16
Benefits of Frame-Based Processing 1-17

Creating Sample-Based Signals . 1-19
Using the DSP Constant Block . 1-19
Using the Signal from Workspace Block 1-22

Creating Frame-Based Signals . 1-26
Using the Sine Wave Block . 1-26
Using the Signal from Workspace Block 1-29

Creating Multichannel Sample-Based Signals 1-33
Combining Single-Channel Sample-Based Signals 1-33
Combining Multichannel Sample-Based Signals 1-36

Creating Multichannel Frame-Based Signals 1-39
Combining Frame-Based Signals . 1-39

v

Deconstructing Multichannel Sample-Based Signals . . 1-43
Splitting Multichannel Sample-Based Signals into

Individual Signals . 1-43
Splitting Multichannel Sample-Based Signals into Several

Multichannel Signals . 1-45

Deconstructing Multichannel Frame-Based Signals . . . 1-49
Splitting Multichannel Frame-Based Signals into

Individual Signals . 1-49
Reordering Channels in Multichannel Frame-Based

Signals . 1-53

Importing and Exporting Sample-Based Signals 1-56
Importing Sample-Based Vector Signals 1-56
Importing Sample-Based Matrix Signals 1-59
Exporting Sample-Based Signals . 1-63

Importing and Exporting Frame-Based Signals 1-68
Importing Frame-Based Signals . 1-68
Exporting Frame-Based Signals . 1-71

Advanced Signal Concepts

2
Inspecting Sample Rates and Frame Rates 2-2

Sample Rate and Frame Rate Concepts 2-2
Inspecting Sample-Based Signals Using the Probe Block . . 2-4
Inspecting Frame-Based Signals Using the Probe Block . . 2-6
Inspecting Sample-Based Signals Using Color Coding 2-8
Inspecting Frame-Based Signals Using Color Coding 2-9

Converting Sample and Frame Rates 2-12
Rate Conversion Blocks . 2-13
Rate Conversion by Frame-Rate Adjustment 2-14
Rate Conversion by Frame-Size Adjustment 2-16
Avoiding Unintended Rate Conversion 2-19
Frame Rebuffering Blocks . 2-25
Buffering with Preservation of the Signal 2-28
Buffering with Alteration of the Signal 2-31

vi Contents

Converting Frame Status . 2-34
Buffering Sample-Based Signals into Frame-Based

Signals . 2-35
Buffering Sample-Based Signals into Frame-Based Signals

with Overlap . 2-38
Buffering Frame-Based Signals into Other Frame-Based

Signals . 2-42
Buffering Delay and Initial Conditions 2-45
Unbuffering Frame-Based Signals into Sample-Based

Signals . 2-46

Delay and Latency . 2-50
Computational Delay . 2-50
Algorithmic Delay . 2-52
Zero Algorithmic Delay . 2-52
Basic Algorithmic Delay . 2-55
Excess Algorithmic Delay (Tasking Latency) 2-58
Predicting Tasking Latency . 2-60

Filters

3
Digital Filter Block . 3-2

Implementing a Lowpass Filter . 3-3
Implementing a Highpass Filter . 3-4
Filtering High-Frequency Noise . 3-5
Specifying Static Filters . 3-10
Specifying Time-Varying Filters . 3-11
Specifying the SOS Matrix (Biquadratic Filter

Coefficients) . 3-16

Digital Filter Design Block . 3-18
Overview of the Digital Filter Design Block 3-19
Choosing Between Filter Design Blocks 3-20
Creating a Lowpass Filter . 3-22
Creating a Highpass Filter . 3-24
Filtering High-Frequency Noise . 3-26

Filter Realization Wizard . 3-32
Designing and Implementing a Fixed-Point Filter 3-33

vii

Setting the Filter Structure and Number of Filter
Sections . 3-48

Optimizing the Filter Structure . 3-49

Analog Filter Design Block . 3-51

Adaptive Filters . 3-53
Creating an Acoustic Environment 3-53
Creating an Adaptive Filter . 3-55
Customizing an Adaptive Filter . 3-60
Adaptive Filtering Demos . 3-64

Multirate Filters . 3-66
Filter Banks . 3-66
Multirate Filtering Examples . 3-74

Transforms

4
Signals in the Time Domain . 4-2

Displaying Time-Domain Data . 4-2
Transforming Time-Domain Data into the Frequency

Domain . 4-5

Signals in the Frequency-Domain 4-9
Displaying Frequency-Domain Data 4-9
Transforming Frequency-Domain Data into the Time

Domain . 4-14

Linear and Bit-Reversed Output Order 4-18
Finding the Bit-Reversed Order of Your Frequency

Indices . 4-18

viii Contents

Quantizers

5
Scalar Quantizers . 5-2

Analysis and Synthesis of Speech . 5-2
Identifying Your Residual Signal and Reflection

Coefficients . 5-4
Creating a Scalar Quantizer . 5-6

Vector Quantizers . 5-12
Building Your Vector Quantizer Model 5-12
Configuring and Running Your Model 5-14

Statistics, Estimation, and Linear Algebra

6
Statistics . 6-2

Basic Operations . 6-2
Running Operations . 6-4

Power Spectrum Estimation . 6-6

Linear Algebra . 6-7
Linear System Solvers . 6-7
Matrix Factorizations . 6-8
Matrix Inverses . 6-10

Data Type Support

7
Supported Data Types and How to Convert to Them . . 7-2

Block Data Type Support Table . 7-4
Code Generation Notes . 7-12

ix

Viewing Data Types of Signals In Models 7-13

Boolean Support . 7-14
Advantages of Using the Boolean Data Type 7-14
Lists of Blocks Supporting Boolean Inputs or Outputs . . . 7-14
Effects of Enabling and Disabling Boolean Support 7-16
Steps to Disabling Boolean Support 7-17

Working with Fixed-Point Data

8
Fixed-Point Signal Processing Development 8-2

Benefits of Fixed-Point Hardware . 8-2
Benefits of Fixed-Point Design with Signal Processing

Blockset . 8-3
Fixed-Point Signal Processing Applications 8-3

Concepts and Terminology . 8-5
Fixed-Point Data Types . 8-5
Scaling . 8-6
Precision and Range . 8-7

Arithmetic Operations . 8-10
Modulo Arithmetic . 8-10
Two’s Complement . 8-11
Addition and Subtraction . 8-12
Multiplication . 8-13
Casts . 8-15

Specifying Fixed-Point Attributes 8-20
Setting Block Parameters . 8-20
Inherit via Internal Rule . 8-26
Specifying System-Level Settings . 8-37

Fixed-Point Filtering . 8-39
Filter Implementation Blocks . 8-39
Filter Design and Implementation Blocks 8-39

x Contents

Index

xi

xii Contents

1

Working with Signals

This chapter helps you understand how sample-based and frame-based
signals are represented in Simulink®. You learn how to create single-channel
and multichannel sample-based and frame-based signals. You also learn
how to extract single-channel signals from multichannel signals. Lastly you
explore how to import signals into signal processing models and export signals
to the MATLAB® workspace.

Discrete-Time Signals (p. 1-3) Overview of discrete-time signals

Continuous-Time Signals (p. 1-11) Overview of continuous-time signals

Sample-Based Signals (p. 1-13) Understand sample-based signals in
both their single and multichannel
form

Frame-Based Signals (p. 1-15) Understand frame-based signals in
both their single and multichannel
form

Creating Sample-Based Signals
(p. 1-19)

Use the DSP Constant block and
the Signal From Workspace block to
generate sample-based signals

Creating Frame-Based Signals
(p. 1-26)

Use the Sine Wave block and the
Signal From Workspace block to
generate frame-based signals

Creating Multichannel
Sample-Based Signals (p. 1-33)

Use the Concatenate block to create
multichannel sample-based signals

Creating Multichannel Frame-Based
Signals (p. 1-39)

Use the Concatenate block to create
multichannel frame-based signals

1 Working with Signals

Deconstructing Multichannel
Sample-Based Signals (p. 1-43)

Learn how to extract single-channel
and multichannel sample-based
signals from multichannel
sample-based signals

Deconstructing Multichannel
Frame-Based Signals (p. 1-49)

Learn how to extract single-channel
and multichannel frame-based
signals from multichannel
frame-based signals and how
to reorder channels in a frame-based
signal

Importing and Exporting
Sample-Based Signals (p. 1-56)

Import sample-based signals from
the MATLAB workspace into your
DSP model and export sample-based
signals from your signal processing
model to the MATLAB workspace

Importing and Exporting
Frame-Based Signals (p. 1-68)

Import frame-based signals from
the MATLAB workspace into your
signal processing model and export
frame-based signals from your signal
processing model to the MATLAB
workspace

1-2

Discrete-Time Signals

Discrete-Time Signals
Simulink models can process both discrete-time and continuous-time signals.
Models built with Signal Processing Blockset are often intended to process
discrete-time signals only. This section defines basic signal terminology
and describes how to set the configuration parameters for discrete-time
simulations.

This section includes the following topics:

Time and Frequency Terminology
(p. 1-3)

Review the definitions of common
discrete-time signal terminology

Recommended Settings for
Discrete-Time Simulations (p. 1-5)

Learn the recommended solver
algorithms for discrete-time
simulations

Other Settings for Discrete-Time
Simulations (p. 1-7)

Learn the other solver algorithms
for discrete-time simulations

Time and Frequency Terminology
A discrete-time signal is a sequence of values that correspond to particular
instants in time. The time instants at which the signal is defined are the
signal’s sample times, and the associated signal values are the signal’s
samples. Traditionally, a discrete-time signal is considered to be undefined at
points in time between the sample times. For a periodically sampled signal,
the equal interval between any pair of consecutive sample times is the signal’s
sample period, Ts. The sample rate, Fs, is the reciprocal of the sample period,
or 1/Ts. The sample rate is the number of samples in the signal per second.

The 7.5-second triangle wave segment below has a sample period of 0.5
second, and sample times of 0.0, 0.5, 1.0, 1.5, ...,7.5. The sample rate of the
sequence is therefore 1/0.5, or 2 Hz.

1-3

1 Working with Signals

A number of different terms are used to describe the characteristics of
discrete-time signals found in Simulink models. These terms, which are listed
in the following table, are frequently used to describe the way that various
blocks operate on sample-based and frame-based signals.

Term Symbol Units Notes

Sample period Ts
Tsi
Tso

Seconds The time interval between consecutive samples in a
sequence, as the input to a block (Tsi) or the output
from a block (Tso).

Frame period Tf
Tfi
Tfo

Seconds The time interval between consecutive frames in a
sequence, as the input to a block (Tfi) or the output
from a block (Tfo).

Signal period T Seconds The time elapsed during a single repetition of a
periodic signal.

Sample
frequency

Fs Hz (samples
per second)

The number of samples per unit time, Fs = 1/Ts.

Frequency f Hz (cycles
per second)

The number of repetitions per unit time of a periodic
signal or signal component, f = 1/T.

Nyquist rate Hz (cycles
per second)

The minimum sample rate that avoids aliasing,
usually twice the highest frequency in the signal
being sampled.

Nyquist
frequency

fnyq Hz (cycles
per second)

Half the Nyquist rate.

Normalized
frequency

fn Two cycles
per sample

Frequency (linear) of a periodic signal normalized to
half the sample rate, fn = ω/π = 2f/Fs.

1-4

Discrete-Time Signals

Term Symbol Units Notes

Angular
frequency

Radians per
second

Frequency of a periodic signal in angular units,
= 2πf.

Digital
(normalized
angular)
frequency

ω Radians per
sample

Frequency (angular) of a periodic signal normalized
to the sample rate, ω = /Fs = πfn.

Note In the Block Parameters dialog boxes, the term sample time is used to
refer to the sample period, Ts. For example, the Sample time parameter
in the Signal From Workspace block specifies the imported signal’s sample
period.

Recommended Settings for Discrete-Time Simulations
Simulink allows you to select from several different simulation solver
algorithms. You can access these solver algorithms from a Simulink model:

1 In the Simulink model window, from the Simulation menu, select
Configuration Parameters. The Configuration Parameters dialog
box opens.

2 In the Select pane, click Solver.

The selections that you make here determine how discrete-time signals are
processed in Simulink. The recommended Solver options settings for
signal processing simulations are

• Type: Fixed-step

• Solver: discrete (no continuous states)

• Fixed step size (fundamental sample time): auto

• Tasking mode for periodic sample times: SingleTasking

1-5

1 Working with Signals

You can automatically set the above solver options for all new models by
running the dspstartup M-file. See “Configuring Simulink for Signal
Processing Models” in the Getting Started Signal Processing Blockset
documentation for more information.

In Fixed-step SingleTasking mode, discrete-time signals differ from the
prototype described in “Time and Frequency Terminology” on page 1-3 by
remaining defined between sample times. For example, the representation
of the discrete-time triangle wave looks like this.

1-6

Discrete-Time Signals

The above signal’s value at t=3.112 seconds is the same as the signal’s value
at t=3 seconds. In Fixed-step SingleTasking mode, a signal’s sample times
are the instants where the signal is allowed to change values, rather than
where the signal is defined. Between the sample times, the signal takes on
the value at the previous sample time.

As a result, in Fixed-step SingleTasking mode, Simulink permits cross-rate
operations such as the addition of two signals of different rates. This is
explained further in “Cross-Rate Operations” on page 1-8.

Other Settings for Discrete-Time Simulations
It is useful to know how the other solver options available in Simulink affect
discrete-time signals. In particular, you should be aware of the properties of
discrete-time signals under the following settings:

• Type: Fixed-step, Mode: MultiTasking

• Type: Variable-step (the Simulink default solver)

• Type: Fixed-step, Mode: Auto

When the Fixed-step MultiTasking solver is selected, discrete signals in
Simulink are undefined between sample times. Simulink generates an error
when operations attempt to reference the undefined region of a signal, as, for
example, when signals with different sample rates are added.

When the Variable-step solver is selected, discrete time signals remain
defined between sample times, just as in the Fixed-step SingleTasking
case described in “Recommended Settings for Discrete-Time Simulations” on
page 1-5. When the Variable-step solver is selected, cross-rate operations
are allowed by Simulink.

In the Fixed-step Auto setting, Simulink automatically selects a tasking
mode, single-tasking or multitasking, that is best suited to the model. See
“Simulink Tasking Mode” on page 2-59 for a description of the criteria that
Simulink uses to make this decision. For the typical model containing
multiple rates, Simulink selects the multitasking mode.

1-7

1 Working with Signals

Cross-Rate Operations
When the Fixed-step MultiTasking solver is selected, discrete signals
in Simulink are undefined between sample times. Therefore, to perform
cross-rate operations like the addition of two signals with different sample
rates, you must convert the two signals to a common sample rate. Several
blocks in the Signal Operations and Multirate Filters libraries can accomplish
this task. See “Converting Sample and Frame Rates” on page 2-12 for more
information. By requiring explicit rate conversions for cross-rate operations
in discrete mode, Simulink helps you to identify sample rate conversion issues
early in the design process.

When the Variable-step solver or Fixed-step SingleTasking solver
is selected, discrete time signals remain defined between sample times.
Therefore, if you sample the signal with a rate or phase that is different from
the signal’s own rate and phase, you will still measure meaningful values:

1 At the MATLAB command line, type doc_sum_tut1.

The Cross-Rate Sum Example model opens. This model sums two signals
with different sample periods.

1-8

Discrete-Time Signals

2 Double-click the upper Signal From Workspace block. The Block
Parameters: Signal From Workspace dialog box opens.

3 Set the Sample time parameter to 1.

This creates a fast signal, (Ts=1), with sample times 1, 2, 3, ...

4 Double-click the lower Signal From Workspace block

5 Set the Sample time parameter to 2.

This creates a slow signal, (Ts=2), with sample times 1, 3, 5, ...

6 Run the model.

Note Using the dspstartup configurations with cross-rate operations
generates errors even though the Fixed-step SingleTasking solver is
selected. This is due to the fact that Single task rate transition is set
to error in the Sample Time pane of the Diagnostics section of the
Configuration Parameters dialog box.

7 At the MATLAB command line, type dsp_examples_yout.

The following output is displayed:

dsp_examples_yout =
1 1 2
2 1 3
3 2 5
4 2 6
5 3 8
6 3 9
7 4 11
8 4 12
9 5 14

10 5 15
0 6 6

1-9

1 Working with Signals

The first column of the matrix is the fast signal, (Ts=1). The second column
of the matrix is the slow signal (Ts=2). The third column is the sum of the
two signals. As expected, the slow signal changes once every 2 seconds,
half as often as the fast signal. Nevertheless, the slow signal is defined at
every moment because Simulink implicitly auto-promotes the rate of the
slower signal to match the rate of the faster signal before the addition
operation is performed.

In general, for Variable-step and Fixed-step SingleTasking modes, when
you measure the value of a discrete signal between sample times, you are
observing the value of the signal at the previous sample time.

1-10

Continuous-Time Signals

Continuous-Time Signals
Most signals in a signal processing model are discrete-time signals. However,
many blocks can also operate on and generate continuous-time signals, whose
values vary continuously with time.

This section includes the following topics:

Continuous-Time Source Blocks
(p. 1-11)

Learn how to set up and use
continuous-time source blocks

Continuous-Time Nonsource Blocks
(p. 1-12)

Learn how to use continuous-time
nonsource blocks

Continuous-Time Source Blocks
Source blocks are those blocks that generate or import signals in a model.
Most source blocks appear in the Signal Processing Sources library. The
sample period for continuous-time source blocks is set internally to zero.
This indicates a continuous-time signal. The Simulink Signal Generator
block and the Signal Processing Blockset DSP Constant block are examples
of continuous-time source blocks. Continuous-time signals are rendered in
black when, from the Format menu, you point to Port/Signal Displays and
select Sample Time Colors.

When connecting continuous-time source blocks to discrete-time blocks, you
might need to interpose a Zero-Order Hold block to discretize the signal.
Specify the desired sample period for the discrete-time signal in the Sample
time parameter of the Zero-Order Hold block.

1-11

1 Working with Signals

Continuous-Time Nonsource Blocks
Most nonsource blocks in Signal Processing Blockset accept continuous-time
signals, and all nonsource blocks inherit the sample period of the input.
Therefore, continuous-time inputs generate continuous-time outputs. Blocks
that are not capable of accepting continuous-time signals include the Digital
Filter, FIR Decimation, FIR Interpolation blocks.

1-12

Sample-Based Signals

Sample-Based Signals
Signals can be sample-based or frame-based, single channel or multichannel.
The following section discusses sample-based signals in both their single
and multichannel form.

This section includes the following topics:

Sample-Based Single Channel
Signals (p. 1-13)

Learn about the characteristics of a
sample-based single channel signal

Sample-Based Multichannel Signals
(p. 1-13)

Learn about the characteristics of a
sample-based multichannel signal

Sample-Based Single Channel Signals
The following figure shows a discrete-time signal. If this signal is propagated
through a model sample-by-sample, rather than in batches of samples, it is
called a sample-based signal. It is also single-channel signal, because there is
only one independent sequence of numbers.

The representation of single-channel signals is actually a special case of the
general multichannel signal.

Sample-Based Multichannel Signals
Sample-based multichannel signals are represented as matrices. An M-by-N
sample-based matrix represents M*N independent channels, each containing
a single value. In other words, each matrix element represents one sample
from a distinct channel.

1-13

1 Working with Signals

As an example, consider the 24-channel (6-by-4) sample-based signal in the
figure below, where ut=0 is the first matrix in the series, ut=1 is the second,
ut=2 is the third, and so on.

The signal in channel 1 is composed of the following sequence:

u u ut t t
11

0
11

1
11

2= = =, , ,K

Similarly, channel 9 (counting down the columns) contains the following
sequence:

u u ut t t
32

0
32

1
32

2= = =, , ,K

In practice, signal samples are frequently transmitted in batches, or frames,
and several channels of data are often transmitted simultaneously in
order to accelerate simulations. Hence, most signals are frame-based and
multichannel signals.

1-14

Frame-Based Signals

Frame-Based Signals
Signals can be sample-based or frame-based, single channel or multichannel.
The following section discusses frame-based signals in both their single and
multichannel form. It also explains how frame-based processing accelerates
real-time systems and simulations.

This section contains the following topics:

Frame-Based Single Channel
Signals (p. 1-15)

Learn about the characteristics of a
frame-based single channel signal

Frame-Based Multichannel Signals
(p. 1-16)

Learn about the characteristics of a
frame-based multichannel signal

Benefits of Frame-Based Processing
(p. 1-17)

Understand how frame-based
processing accelerates real-time
systems and simulations

Frame-Based Single Channel Signals
The following figure shows a discrete-time signal. If this signal is propagated
through a model in batches of samples, it is called a frame-based signal. It is
also single-channel signal, because there is only one independent sequence
of numbers.

Frame-based single channel signals are represented as vectors. An M-by-1
frame-based vector represents M consecutive samples from a single channel.
In other words, each matrix row represents one sample, or time slice, from
one distinct channel.

1-15

1 Working with Signals

Frame-Based Multichannel Signals
Frame-based multichannel signals are represented as matrices. An M-by-N
frame-based matrix represents M consecutive samples from each of N
independent channels. In other words, each matrix row represents one
sample, or time slice, from N distinct signal channels, and each matrix column
represents M consecutive samples from a single channel.

For example, this 6-by-4 matrix represents a four-channel frame-based signal
with six samples per frame.

Consider a sequence of frame matrices, where ut=0 is the first matrix in a
series, ut=1 is the second, ut=2 is the third, and so on.

The signal in channel 1 is the following sequence:

u u u u u u u ut t t
M
t t t t

11
0

21
0

31
0

1
0

11
1

21
1

31
1= = = = = = =, , , , , , , ...,... , MM

t t tu u1
1

11
2

21
2= = =, , ...,

Similarly, the signal in channel 3 is the following sequence:

u u u u u u u ut t t
M
t t t t

M13
0

23
0

33
0

3
0

13
1

23
1

33
1= = = = = = =, , ,..., , , , ..., 33

1
13

2
23

2t t tu u= = =, , ,...

1-16

Frame-Based Signals

Benefits of Frame-Based Processing
Frame-based processing is an established method of accelerating both
real-time systems and simulations.

Accelerating Real-Time Systems
Frame-based data is a common format in real-time systems. Data acquisition
hardware often operates by accumulating a large number of signal samples
at a high rate, and propagating these samples to the real-time system as a
block of data. This maximizes the efficiency of the system by distributing the
fixed process overhead across many samples; the “fast” data acquisition is
suspended by “slow” interrupt processes after each frame is acquired, rather
than after each individual sample.

The figure below illustrates how throughput is increased by frame-based
data acquisition. The thin blocks each represent the time elapsed during
acquisition of a sample. The thicker blocks each represent the time elapsed
during the interrupt service routine (ISR) that reads the data from the
hardware.

In this example, the frame-based operation acquires a frame of 16 samples
between each ISR. The frame-based throughput rate is therefore many times
higher than the sample-based alternative.

1-17

1 Working with Signals

It’s important to note that frame-based processing introduces a certain
amount of latency into a process due to the inherent lag in buffering the
initial frame. In many instances, however, it is possible to select frame sizes
that improve throughput without creating unacceptable latencies. For more
information, see “Delay and Latency” on page 2-50.

Accelerating Simulations
The simulation of your model also benefits from frame-based processing. In
this case, it is the overhead of block-to-block communications that is reduced
by propagating frames rather than individual samples.

1-18

Creating Sample-Based Signals

Creating Sample-Based Signals
A sample-based signal is propagated through a model one sample at a time.
This section describes two ways to create a sample-based signal.

This section includes the following topics:

Using the DSP Constant Block
(p. 1-19)

Create a six-channel, constant
sample-based signal using the DSP
Constant block

Using the Signal from Workspace
Block (p. 1-22)

Create a four-channel sample-based
signal using the Signal From
Workspace block

Using the DSP Constant Block
A constant sample-based signal has identical successive samples. The Signal
Processing Sources library provides the following blocks for creating constant
sample-based signals:

• Constant Diagonal Matrix

• DSP Constant

• Identity Matrix

The most versatile of the blocks listed above is the DSP Constant block. This
topic discusses how to create a constant sample-based signal using the DSP
Constant block:

1 Create a new Simulink model.

2 From the Signal Processing Sources library, click-and-drag a DSP Constant
block into the model.

3 From the Signal Processing Sinks library, click-and-drag a Display block
into the model.

4 Connect the two blocks.

1-19

1 Working with Signals

5 Double-click the DSP Constant block, and set the block parameters as
follows:

• Constant value = [1 2 3; 4 5 6]

• Sample mode = Discrete

• Output = Sample-based

• Sample time = 1

Based on these parameters, the DSP Constant block outputs a constant,
discrete-valued, sample-based matrix signal with a sample period of 1
second.

The DSP Constant block’s Constant value parameter can be any valid
MATLAB variable or expression that evaluates to a matrix. See “Matrices
and Linear Algebra” in the MATLAB documentation for a thorough
introduction to constructing and indexing matrices.

6 Save these parameters and close the dialog box by clicking OK.

7 From the Format menu, point to Port/ Signal Displays and select Signal
Dimensions.

8 Run the model and expand the Display block so you can view the entire
signal.

1-20

Creating Sample-Based Signals

The model should now look similar to the following figure. You can also
open the model by typing doc_usingdspcnstblksb at the MATLAB
command line.

You have now successfully created a six-channel, constant sample-based
signal with a sample period of 1 second.

Creating a 1-D Vector Signal
You can modify the previous model in order to create a 1-D vector signal:

1 Double-click the DSP Constant block, and set the block parameters as
follows:

• Constant value = [1 2 3 4 5 6]

• Output = Sample-based (interpret vector as 1-D)

2 Save these parameters and close the dialog box by clicking OK.

3 Run the model and expand the Display block so you can view the entire
signal.

1-21

1 Working with Signals

The following figure shows the results of these two procedures.

The DSP Constant block generates a length-6 1-D vector signal. This means
that the output is not a matrix. However, most nonsource signal processing
blocks interpret a length-M 1-D vector as an M-by-1 matrix (column vector).

Note A 1-D vector signal must always be sample based.

Using the Signal from Workspace Block
This topic discusses how to create a four-channel sample-based signal with a
sample period of 1 second using the Signal From Workspace block:

1 Create a new Simulink model.

2 From the Signal Processing Sources library, click-and-drag a Signal From
Workspace block into the model.

3 From the Signal Processing Sinks library, click-and-drag a Signal To
Workspace block into the model.

4 Connect the two blocks.

1-22

Creating Sample-Based Signals

5 Double-click the Signal From Workspace block, and set the block
parameters as follows:

• Signal = cat(3,[1 -1;0 5],[2 -2;0 5],[3 -3;0 5])

• Sample time = 1

• Samples per frame = 1

• Form output after final data value by = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a
four-channel sample-based signal with a sample period of 1 second. After
the block has output the signal, all subsequent outputs have a value of zero.
The four channels contain the following values:

• Channel 1: 1, 2, 3, 0, 0,...

• Channel 2: -1, -2, -3, 0, 0,...

• Channel 3: 0, 0, 0, 0, 0,...

• Channel 4: 5, 5, 5, 0, 0,...

6 Save these parameters and close the dialog box by clicking OK.

7 From the Format menu, point to Port/Signal Displays, and select Signal
Dimensions.

8 Run the model.

1-23

1 Working with Signals

The following figure is a graphical representation of the model’s
behavior during simulation. You can also open the model by typing
doc_usingsfwblksb at the MATLAB command line.

9 At the MATLAB command line, type yout.

The following is a portion of the output:

yout(:,:,1) =

1 -1
0 5

yout(:,:,2) =

2 -2
0 5

yout(:,:,3) =

3 -3
0 5

yout(:,:,4) =

0 0

1-24

Creating Sample-Based Signals

0 0

You have now successfully created a four-channel sample-based signal with
sample period of 1 second using the Signal From Workspace block.

1-25

1 Working with Signals

Creating Frame-Based Signals
A frame-based signal is propagated through a model in batches of samples
called frames. Frame-based processing can significantly improve the
performance of your model by decreasing the amount of time it takes your
simulation to run. This section describes two ways to create frame-based
signals.

This section includes the following topics:

Using the Sine Wave Block (p. 1-26) Create a three-channel frame-based
signal using the Sine Wave block

Using the Signal from Workspace
Block (p. 1-29)

Create a two-channel frame-based
signal using the Signal From
Workspace block

Using the Sine Wave Block
The Signal Processing Sources library provides the following blocks for
automatically generating common frame-based signals:

• Chirp

• Discrete Impulse

• Multiphase Clock

• N-Sample Enable

• Signal From Workspace

• Sine Wave

For information about the specific functionality of these blocks, see their
respective block reference pages.

One of the most commonly used blocks in the Signal Processing Sources
library is the Sine Wave block. This topic describes how to create a
three-channel frame-based signal using the Sine Wave block:

1 Create a new Simulink model.

1-26

Creating Frame-Based Signals

2 From the Signal Processing Sources library, click-and-drag a Sine Wave
block into the model.

3 From the Matrix Operations library, click-and-drag a Matrix Sum block
into the model.

4 From the Signal Processing Sinks library, click-and-drag a Signal to
Workspace block into the model.

5 Connect the blocks in the order in which you added them to your model.

6 Double-click the Sine Wave block, and set the block parameters as follows:

• Amplitude = [1 3 2]

• Frequency = [100 250 500]

• Sample time = 1/5000

• Samples per frame = 64

Based on these parameters, the Sine Wave block outputs three sinusoids
with amplitudes 1, 3, and 2 and frequencies 100, 250, and 500 hertz,
respectively. The sample period, 1/5000, is 10 times the highest sinusoid
frequency, which satisfies the Nyquist criterion. The frame size is 64 for all
sinusoids, and, therefore, the output has 64 rows.

7 Save these parameters and close the dialog box by clicking OK.

You have now successfully created a three-channel frame-based signal
using the Sine Wave block. The rest of this procedure describes how to
add these three sinusoids together.

8 Double-click the Matrix Sum block, and set the Sum along parameter to
Rows. Click OK.

9 From the Format menu, point to Port/Signal Displays, and select Signal
Dimensions.

10 Run the model.

1-27

1 Working with Signals

Your model should now look similar to the following figure. You can
also open the model by typing doc_usingsinwaveblkfb at the MATLAB
command line.

The three signals are summed point-by-point by a Matrix Sum block. Then,
they are exported to the MATLAB workspace.

1-28

Creating Frame-Based Signals

11 At the MATLAB command line, type plot(yout(1:100)).

Your plot should look similar to the following figure.

This figure represents a portion of the sum of the three sinusoids. You have
now added the channels of a three-channel frame-based signal together and
displayed the results in a figure window.

Using the Signal from Workspace Block
This topic describes how to create a two-channel frame-based signal with a
sample period of 1 second, a frame period of 4 seconds, and a frame size of 4
samples using the Signal From Workspace block:

1-29

1 Working with Signals

1 Create a new Simulink model.

2 From the Signal Processing Sources library, click-and-drag a Signal From
Workspace block into the model.

3 From the Signal Processing Sinks library, click-and-drag a Signal To
Workspace block into the model.

4 Connect the two blocks.

5 Double-click the Signal From Workspace block, and set the block
parameters as follows:

• Signal = [1:10; 1 1 0 0 1 1 0 0 1 1]'

• Sample time = 1

• Samples per frame = 4

• Form output after final data value by = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a
two-channel, frame-based signal has a sample period of 1 second, a frame
period of 4 seconds, and a frame size of four samples. After the block
outputs the signal, all subsequent outputs have a value of zero. The two
channels contain the following values:

• Channel 1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0, 0,...

• Channel 2: 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0,...

6 Save these parameters and close the dialog box by clicking OK.

7 From the Format menu, point to Port/Signal Displays, and select Signal
Dimensions.

1-30

Creating Frame-Based Signals

8 Run the model.

The following figure is a graphical representation of the model’s
behavior during simulation. You can also open the model by typing
doc_usingsfwblkfb at the MATLAB command line.

9 At the MATLAB command line, type yout.

The following is the output displayed at the MATLAB command line.

yout =

1 1
2 1
3 0
4 0
5 1
6 1
7 0
8 0
9 1

10 1
0 0
0 0

1-31

1 Working with Signals

Note that zeros were appended to the end of each channel. You have now
successfully created a two-channel frame-based signal and exported it to the
MATLAB workspace.

1-32

Creating Multichannel Sample-Based Signals

Creating Multichannel Sample-Based Signals
When you want to perform the same operations on several independent
signals, you can group those signals together as a multichannel signal. For
example, if you need to filter each of four independent signals using the
same direct-form II transpose filter, you can combine the signals into a
multichannel signal, and connect the signal to a single Digital Filter Design
block. The block applies the filter to each channel independently.

A sample-based signal with M*N channels is represented by a sequence of
M-by-N matrices. Multiple sample-based signals can be combined into a
single multichannel sample-based signal using the Concatenate block. In
addition, several multichannel sample-based signals can be combined into a
single multichannel sample-based signal using the same technique.

This section contains the following topics:

Combining Single-Channel
Sample-Based Signals (p. 1-33)

Create a multichannel sample-based
signal from several individual
sample-based signals

Combining Multichannel
Sample-Based Signals (p. 1-36)

Create a multichannel sample-based
signal from several multichannel
sample-based signals

Combining Single-Channel Sample-Based Signals
You can combine individual sample-based signals into a multichannel signal
by using the Concatenate block in the Simulink Math Operations library:

1 Open the Matrix Concatenation Example 1 model by typing

doc_cmbsnglchsbsigs

at the MATLAB command line.

1-33

1 Working with Signals

2 Double-click the Signal From Workspace block, and set the Signal
parameter to 1:10. Click OK.

3 Double-click the Signal From Workspace1 block, and set the Signal
parameter to -1:-1:-10. Click OK.

4 Double-click the Signal From Workspace2 block, and set the Signal
parameter to zeros(10,1). Click OK.

5 Double-click the Signal From Workspace3 block, and set the Signal
parameter to 5*ones(10,1). Click OK.

6 Double-click the Matrix Concatenation block. Set the block parameters as
follows, and then click OK:

• Number of inputs = 4

• Concatenation method = Vertical

1-34

Creating Multichannel Sample-Based Signals

7 Double-click the Reshape block. Set the block parameters as follows, and
then click OK:

• Output dimensionality = Customize

• Output dimensions = [2,2]

8 Run the model.

Four independent sample-based signals are combined into a 2-by-2
multichannel matrix signal.

Each 4-by-1 output from the Matrix Concatenation block contains one
sample from each of the four input signals at the same instant in time. The
Reshape block rearranges the samples into a 2-by-2 matrix. Each element
of this matrix is a separate channel.

1-35

1 Working with Signals

Note that the Reshape block works columnwise, so that a column vector
input is reshaped as shown below.

The 4-by-1 matrix output by the Matrix Concatenation block and the 2-by-2
matrix output by the Reshape block in the above model represent the same
four-channel sample-based signal. In some cases, one representation of the
signal may be more useful than the other.

9 At the MATLAB command line, type dsp_examples_yout.

The four-channel, sample-based signal is displayed as a series of matrices
in the MATLAB Command Window. Note that the last matrix contains
only zeros. This is because every Signal From Workspace block in this
model has its Form output after final data value by parameter set
to Setting to Zero.

Combining Multichannel Sample-Based Signals
You can combine existing multichannel sample-based signals into larger
multichannel signals using the Simulink Concatenate block:

1 Open the Matrix Concatenation Example 2 model by typing

doc_cmbmltichsbsigs

at the MATLAB command line.

1-36

Creating Multichannel Sample-Based Signals

2 Double-click the Signal From Workspace block, and set the Signal
parameter to [1:10;-1:-1:-10]'. Click OK.

3 Double-click the Signal From Workspace1 block, and set the Signal
parameter to [zeros(10,1) 5*ones(10,1)]. Click OK.

4 Double-click the Matrix Concatenation block. Set the block parameters as
follows, and then click OK:

• Number of inputs = 2

• Concatenation method = Vertical

1-37

1 Working with Signals

5 Run the model.

The model combines both two-channel sample-based signals into a
four-channel signal.

Each 2-by-2 output from the Matrix Concatenation block contains both
samples from each of the two input signals at the same instant in time.
Each element of this matrix is a separate channel.

1-38

Creating Multichannel Frame-Based Signals

Creating Multichannel Frame-Based Signals
When you want to perform the same operations on several independent
signals, you can group those signals together as a multichannel signal. For
example, if you need to filter each of four independent signals using the
same direct-form II transpose filter, you can combine the signals into a
multichannel signal, and connect the signal to a single Digital Filter Design
block. The block applies the filter to each channel independently.

A frame-based signal with N channels and frame size M is represented by
a sequence of M-by-N matrices. Multiple individual frame-based signals,
with the same frame rate and size, can be combined into a multichannel
frame-based signal using the Simulink Concatenate block. Individual signals
can be added to an existing multichannel signal in the same way.

Combining Frame-Based Signals
You can combine existing frame-based signals into a larger multichannel
signal by using the Simulink Concatenate block. All signals must have
the same frame rate and frame size. In this example, a single-channel
frame-based signal is combined with a two-channel frame-based signal to
produce a three-channel frame-based signal:

1 Open the Matrix Concatenation Example 3 model by typing

1-39

1 Working with Signals

doc_combiningfbsigs

at the MATLAB command line.

2 Double-click the Signal From Workspace block. Set the block parameters
as follows:

• Signal = [1:10;-1:-1:-10]'

• Sample time = 1

• Samples per frame = 4

Based on these parameters, the Signal From Workspace block outputs a
frame-based signal with a frame size of four.

3 Save these parameters and close the dialog box by clicking OK.

4 Double-click the Signal From Workspace1 block. Set the block parameters
as follows, and then click OK:

1-40

Creating Multichannel Frame-Based Signals

• Signal = 5*ones(10,1)

• Sample time = 1

• Samples per frame = 4

The Signal From Workspace1 block has the same sample time and frame
size as the Signal From Workspace block. When you combine frame-based
signals into multichannel signals, the original signals must have the same
frame rate and frame size.

5 Double-click the Matrix Concatenation block. Set the block parameters as
follows, and then click OK:

• Number of inputs = 2

• Concatenation method = Horizontal

1-41

1 Working with Signals

6 Run the model.

The figure below is a graphical representation of what happens to one
input frame during simulation.

The 4-by-3 matrix output from the Matrix Concatenation block contains
all three input channels, and preserves their common frame rate and
frame size.

1-42

Deconstructing Multichannel Sample-Based Signals

Deconstructing Multichannel Sample-Based Signals
Multichannel signals, represented by matrices in Simulink, are frequently
used in signal processing models for efficiency and compactness. Though most
of the signal processing blocks can process multichannel signals, you may need
to access just one channel or a particular range of samples in a multichannel
signal. You can access individual channels of the multichannel signal by
using the blocks in the Indexing library. This library includes the Selector,
Submatrix, Variable Selector, Multiport Selector, and Submatrix blocks.

This section includes the following topics:

Splitting Multichannel
Sample-Based Signals into
Individual Signals (p. 1-43)

Use the Multiport Selector block
to create three, single-channel
sample-based signals from a
multichannel sample-based signal

Splitting Multichannel
Sample-Based Signals into Several
Multichannel Signals (p. 1-45)

Use the Submatrix block to create
a six-channel sample-based signal
from a 35-channel sample-based
signal.

Splitting Multichannel Sample-Based Signals into
Individual Signals
You can split multichannel sample-based signal into single-channel
sample-based signals using the Multiport Selector block. This blocks allows
you to select specific rows and/or columns and propagate this selection to a
chosen output port. In this example, a three-channel sample-based signal is
deconstructed into three independent sample-based signals:

1 Open the Multiport Selector Example 1 model by typing
doc_splitmltichsbsigsind at the MATLAB command line.

1-43

1 Working with Signals

2 Double-click the Signal From Workspace block, and set the block
parameters as follows:

• Signal = randn(3,1,10)

• Sample time = 1

• Samples per frame = 1

Based on these parameters, the Signal From Workspace block outputs a
three-channel, sample-based signal with a sample period of 1 second.

3 Save these parameters and close the dialog box by clicking OK.

4 Double-click the Multiport Selector block. Set the block parameters as
follows, and then click OK:

• Select = Rows

• Indices to output = {1,2,3}

1-44

Deconstructing Multichannel Sample-Based Signals

Based on these parameters, the Multiport Selector block extracts the rows
of the input. The Indices to output parameter setting specifies that row 1
of the input should be reproduced at output 1, row 2 of the input should
be reproduced at output 2, and row 3 of the input should be reproduced
at output 3.

5 Run the model.

6 At the MATLAB command line, type dsp_examples_yout.

The following is a portion of what is displayed at the MATLAB command
line. Because the input signal is random, your output might be different
than the output show here.

dsp_examples_yout(:,:,1) =

-0.1199

dsp_examples_yout(:,:,2) =

-0.5955

dsp_examples_yout(:,:,3) =

-0.0793

This sample-based signal is the first row of the input to the Multiport
Selector block. You can view the other two input rows by typing
dsp_examples_yout1 and dsp_examples_yout2, respectively.

You have now successfully created three, single-channel sample-based signals
from a multichannel sample-based signal using a Multiport Selector block.

Splitting Multichannel Sample-Based Signals into
Several Multichannel Signals
You can split a multichannel sample-based signal into other multichannel
sample-based signals using the Submatrix block. The Submatrix block is the
most versatile of the blocks in the Indexing library because it allows arbitrary
channel selections. Therefore, you can extract a portion of a multichannel

1-45

1 Working with Signals

sample-based signal. In this example, you extract a six-channel, sample-based
signal from a 35-channel, sample-based signal (5-by-7 matrix):

1 Open the Submatrix Example model by typing doc_splitmltichsbsigsev
at the MATLAB command line.

2 Double-click the DSP Constant block, and set the block parameters as
follows:

• Constant value = rand(5,7)

• Output = Sample-based

Based on these parameters, the DSP Constant block outputs a
constant-valued, sample-based signal.

3 Save these parameters and close the dialog box by clicking OK.

4 Double-click the Submatrix block. Set the block parameters as follows,
and then click OK:

1-46

Deconstructing Multichannel Sample-Based Signals

• Row span = Range of rows

• Starting row = Index

• Starting row index = 3

• Ending row = Last

• Column span = Range of columns

• Starting column = Offset from last

• Starting column index = 1

• Ending column = Last

Based on these parameters, the Submatrix block outputs rows three to five,
the last row of the input signal. It also outputs the second to last column
and the last column of the input signal.

1-47

1 Working with Signals

5 Run the model.

The model should now look similar to the following figure.

Notice that the output of the Submatrix block is equivalent to the matrix
created by rows three through five and columns six through seven of the
input matrix.

You have now successfully created a six-channel, sample-based signal from a
35-channel sample-based signal using a Submatrix block.

1-48

Deconstructing Multichannel Frame-Based Signals

Deconstructing Multichannel Frame-Based Signals
Multichannel signals, represented by matrices in Simulink, are frequently
used in signal processing models for efficiency and compactness. Though
most of the signal processing blocks can process multichannel signals, you
may need to access just one channel or a particular range of samples in a
multichannel signal. You can access individual channels of the multichannel
signal by using the blocks in the Indexing library. This library includes the
Selector, Submatrix, Variable Selector, Multiport Selector, and Submatrix
blocks. It is also possible to use the Permute Matrix block, in the Matrix
operations library, to reorder the channels of a frame-based signal.

This section includes the following topics:

Splitting Multichannel Frame-Based
Signals into Individual Signals
(p. 1-49)

Use the Multiport Selector block
to create a single-channel and a
two-channel frame-based signal from
a multichannel frame-based signal

Reordering Channels in
Multichannel Frame-Based Signals
(p. 1-53)

Use the Permute Matrix block
to rearrange the channels in a
frame-based signal

Splitting Multichannel Frame-Based Signals into
Individual Signals
You can use the Multiport Selector block in the Indexing library to extract the
individual channels of a multichannel frame-based signal. These signals form
single-channel frame-based signals that have the same frame rate and size
of the multichannel signal.

1-49

1 Working with Signals

The figure below is a graphical representation of this process.

In this example, you use the Multiport Selector block to extract a
single-channel and a two channel frame-based signal from a multichannel
frame-based signal:

1 Open the Multiport Selector Example 2 model by typing
doc_splitmltichfbsigsind

at the MATLAB command line.

1-50

Deconstructing Multichannel Frame-Based Signals

2 Double-click the Signal From Workspace block, and set the block
parameters as follows:

• Signal = [1:10;-1:-1:-10;5*ones(1,10)]'

• Samples per frame = 4

Based on these parameters, the Signal From Workspace block outputs a
three-channel, frame-based signal with a frame size of four.

3 Save these parameters and close the dialog box by clicking OK.

4 Double-click the Multiport Selector block. Set the block parameters as
follows, and then click OK:

• Select = Columns

1-51

1 Working with Signals

• Indices to output = {[1 3],2}

Based on these parameters, the Multiport Selector block outputs the first
and third columns at the first output port and the second column at the
second output port of the block. Setting the Select parameter to Columns
ensures that the block preserves the frame rate and frame size of the input.

5 Run the model.

The figure below is a graphical representation of how the Multiport
Selector block splits one frame of the three-channel frame-based signal into
a single-channel signal and a two-channel signal.

The Multiport Selector block outputs a two-channel frame-based signal,
comprised of the first and third column of the input signal, at the first port. It
outputs a single-channel frame-based signal, comprised of the second column
of the input signal, at the second port.

1-52

Deconstructing Multichannel Frame-Based Signals

You have now successfully created a single-channel and a two-channel
frame-based signal from a multichannel frame-based signal using the
Multiport Selector block.

Reordering Channels in Multichannel Frame-Based
Signals
Some blocks in Signal Processing Blockset have the ability to process the
interaction of channels. Typically, Signal Processing Blockset blocks compare
channel one of signal A to channel one of signal B. However, you might want to
correlate channel one of signal A with channel three of signal B. In this case,
in order to compare the correct signals, you need to use the Permute Matrix
block to rearrange the channels of your frame-based signals. This example
explains how to accomplish this task:

1 Open the Permute Matrix Example model by typing
doc_reordermltichfbsigs at the MATLAB command line.

2 Double-click the Signal From Workspace block, and set the block
parameters as follows:

1-53

1 Working with Signals

• Signal = [1:10;-1:-1:-10;5*ones(1,10)]'

• Sample time = 1

• Samples per frame = 4

Based on these parameters, the Signal From Workspace block outputs a
three-channel, frame-based signal with a sample period of 1 second and a
frame size of 4. The frame period of this block is 4 seconds.

3 Save these parameters and close the dialog box by clicking OK.

4 Double-click the DSP Constant block. Set the block parameters as follows,
and then click OK:

• Constant value = [1 3 2]

• Sample mode = Discrete

• Output = Frame-based

• Frame period = 4

The discrete-time, frame-based vector output by the DSP Constant block
tells the Permute Matrix block to swap the second and third columns of the
input signal. Note that the frame period of the DSP Constant block must
match the frame period of the Signal From Workspace block.

5 Double-click the Permute Matrix block. Set the block parameters as
follows, and then click OK:

• Permute = Columns

• Index mode = One-based

Based on these parameters, the Permute Matrix block rearranges the
columns of the input signal, and the index of the first column is now one.

6 Run the model.

The figure below is a graphical representation of what happens to the first
input frame during simulation.

1-54

Deconstructing Multichannel Frame-Based Signals

The second and third channel of the frame-based input signal are swapped.

7 At the MATLAB command line, type yout.

You can now verify that the second and third columns of the input signal
are rearranged.

You have now successfully reordered the channels of a frame-based signal
using the Permute Matrix block.

1-55

1 Working with Signals

Importing and Exporting Sample-Based Signals
Although a number of signal generation blocks are available in both the
Simulink and the Signal Processing Blockset libraries, it is also possible to
import custom signals from the MATLAB workspace into your Simulink
model. The Signal From Workspace block in the Signal Processing Sources
library is the key block for importing sample-based signals of all dimensions
from the MATLAB workspace. The Signal To Workspace block in the Signal
Processing Sinks library can be used to export sample-based signals to the
MATLAB workspace

This section includes the following topics:

Importing Sample-Based Vector
Signals (p. 1-56)

Use the Signal From Workspace
block to import a sample-based
vector signal into your signal
processing model

Importing Sample-Based Matrix
Signals (p. 1-59)

Use the Signal From Workspace
block to import a sample-based
matrix signal into your signal
processing model

Exporting Sample-Based Signals
(p. 1-63)

Use the Signal To Workspace block
to export a sample-based matrix
signal to your MATLAB workspace

Importing Sample-Based Vector Signals
The Signal From Workspace block generates a sample-based vector signal
when the variable or expression in the Signal parameter is a matrix and the
Samples per frame parameter is set to 1. Each column of the input matrix
represents a different channel. Beginning with the first row of the matrix,
the block outputs one row of the matrix at each sample time. Therefore, if the
Signal parameter specifies an M-by-N matrix, the output of the Signal From
Workspace block is M 1-by-N row vectors representing N channels.

1-56

Importing and Exporting Sample-Based Signals

The figure below is a graphical representation of this process for a 6-by-4
workspace matrix, A.

In the following example, you use the Signal From Workspace block to import
a sample-based vector signal into your model:

1 Open the Signal From Workspace Example 3 model by typing
doc_importsbvectorsigs at the MATLAB command line.

1-57

1 Working with Signals

2 At the MATLAB command line, type A = [1:100;-1:-1:-100]';

The matrix A represents a two column signal, where each column is a
different channel.

3 At the MATLAB command line, type B = 5*ones(100,1);

The vector B represents a single-channel signal.

4 Double-click the Signal From Workspace block, and set the block
parameters as follows:

• Signal = [A B]

• Sample time = 1

• Samples per frame = 1

• Form output after final data value = Setting to zero

The Signal expression [A B] uses the standard MATLAB syntax for
horizontally concatenating matrices and appends column vector B to the
right of matrix A. The Signal From Workspace block outputs a sample-based
signal with a sample period of 1 second. After the block has output the
signal, all subsequent outputs have a value of zero.

1-58

Importing and Exporting Sample-Based Signals

5 Save these parameters and close the dialog box by clicking OK.

6 Run the model.

The following figure is a graphical representation of the model’s behavior
during simulation.

The first row of the input matrix [A B] is output at time t=0, the second
row of the input matrix is output at time t=1, and so on.

You have now successfully imported a sample-based vector signal into your
signal processing model using the Signal From Workspace block.

Importing Sample-Based Matrix Signals
The Signal From Workspace block generates a sample-based matrix
signal when the variable or expression in the Signal parameter is a
three-dimensional array and the Samples per frame parameter is set to 1.
Beginning with the first page of the array, the block outputs a single page
of the array to the output at each sample time. Therefore, if the Signal
parameter specifies an M-by-N-by-P array, the output of the Signal From
Workspace block is P M-by-N matrices representing M*N channels.

1-59

1 Working with Signals

The following figure is a graphical illustration of this process for a 6-by-4-by-5
workspace array A.

In the following example, you use the Signal From Workspace block to import
a four-channel, sample-based matrix signal into a Simulink model:

1 Open the Signal From Workspace Example 4 model by typing
doc_importsbmatrixsigs at the MATLAB command line.

1-60

Importing and Exporting Sample-Based Signals

Also, the following variables are loaded into the MATLAB workspace:

Fs 1x1 8 double array

dsp_examples_A 2x2x100 3200 double array

dsp_examples_sig1 1x1x100 800 double array

dsp_examples_sig12 1x2x100 1600 double array

dsp_examples_sig2 1x1x100 800 double array

dsp_examples_sig3 1x1x100 800 double array

dsp_examples_sig34 1x2x100 1600 double array

dsp_examples_sig4 1x1x100 800 double array

mtlb 4001x1 32008 double array

1-61

1 Working with Signals

2 Double-click the Signal From Workspace block. Set the block parameters
as follows, and then click OK:

• Signal = dsp_examples_A

• Sample time = 1

• Samples per frame = 1

• Form output after final data value = Setting to zero

The dsp_examples_A array represents a four-channel, sample-based signal
with 100 samples in each channel. This is the signal that you want to
import, and it was created in the following way:

dsp_examples_sig1 = reshape(1:100,[1 1 100])
dsp_examples_sig2 = reshape(-1:-1:-100,[1 1 100])
dsp_examples_sig3 = zeros(1,1,100)
dsp_examples_sig4 = 5*ones(1,1,100)
dsp_examples_sig12 = cat(2,sig1,sig2)
dsp_examples_sig34 = cat(2,sig3,sig4)
dsp_examples_A = cat(1,sig12,sig34) % 2-by-2-by-100 array

3 Run the model.

The figure below is a graphical representation of the model’s behavior
during simulation.

1-62

Importing and Exporting Sample-Based Signals

The Signal From Workspace block imports the four-channel sample based
signal from the MATLAB workspace into the Simulink model one matrix at
a time.

You have now successfully imported a sample-based matrix signal into your
model using the Signal From Workspace block.

Exporting Sample-Based Signals
The Signal To Workspace and Triggered To Workspace blocks are the primary
blocks for exporting signals of all dimensions from a Simulink model to the
MATLAB workspace.

A sample-based signal, with M*N channels, is represented in Simulink as a
sequence of M-by-N matrices. When the input to the Signal To Workspace
block is a sample-based signal, the block creates an M-by-N-by-P array in
the MATLAB workspace containing the P most recent samples from each
channel. The number of pages, P, is specified by the Limit data points to
last parameter. The newest samples are added at the back of the array.

1-63

1 Working with Signals

The figure below is the graphical illustration of this process using a 6-by-4
sample-based signal exported to workspace array A.

The workspace array always has time running along its third dimension, P.
Samples are saved along the P dimension whether the input is a matrix,
vector, or scalar (single channel case).

In the following example you use a Signal To Workspace block to export a
sample-based matrix signal to the MATLAB workspace:

1 Open the Signal From Workspace Example 6 model by typing
doc_exportsbsigs at the MATLAB command line.

1-64

Importing and Exporting Sample-Based Signals

Also, the following variables are loaded into the MATLAB workspace:

Fs 1x1 8 double array

dsp_examples_A 2x2x100 3200 double array

dsp_examples_sig1 1x1x100 800 double array

dsp_examples_sig12 1x2x100 1600 double array

dsp_examples_sig2 1x1x100 800 double array

dsp_examples_sig3 1x1x100 800 double array

dsp_examples_sig34 1x2x100 1600 double array

dsp_examples_sig4 1x1x100 800 double array

mtlb 4001x1 32008 double array

In this model, the Signal From Workspace block imports a four-channel
sample-based signal called dsp_examples_A. This signal is then exported
to the MATLAB workspace using a Signal to Workspace block.

1-65

1 Working with Signals

2 Double-click the Signal From Workspace block. Set the block parameters
as follows, and then click OK:

• Signal = dsp_examples_A

• Sample time = 1

• Samples per frame = 1

• Form output after final data value = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a
sample-based signal with a sample period of 1 second. After the block has
output the signal, all subsequent outputs have a value of zero.

3 Double-click the Signal To Workspace block. Set the block parameters as
follows, and then click OK:

• Variable name = dsp_examples_yout

• Limit data points to last parameter to inf

• Decimation = 1

Based on these parameters, the Signal To Workspace block exports its
sample-based input signal to a variable called dsp_examples_yout in the
MATLAB workspace. The workspace variable can grow indefinitely large
in order to capture all of the input data. The signal is not decimated before
it is exported to the MATLAB workspace.

4 Run the model.

5 At the MATLAB command line, type dsp_examples_yout.

The four-channel sample-based signal, dsp_examples_A, is output at the
MATLAB command line. The following is a portion of the output that is
displayed.

dsp_examples_yout(:,:,1) =

1 -1
0 5

dsp_examples_yout(:,:,2) =

1-66

Importing and Exporting Sample-Based Signals

2 -2
0 5

dsp_examples_yout(:,:,3) =

3 -3
0 5

dsp_examples_yout(:,:,4) =

4 -4
0 5

Each page of the output represents a different sample time, and each element
of the matrices is in a separate channel.

You have now successfully exported a four-channel sample-based signal from
a Simulink model to the MATLAB workspace using the Signal To Workspace
block.

1-67

1 Working with Signals

Importing and Exporting Frame-Based Signals
Although a number of signal generation blocks are available in both the
Simulink and the Signal Processing Blockset libraries, it is also possible to
import frame-based signals from the MATLAB workspace into your Simulink
model. The Signal From Workspace block in the Signal Processing Sources
library is the key block for importing frame-based signals of all dimensions
from the MATLAB workspace. The Signal To Workspace block in the Signal
Processing Sinks library can be used to export frame-based signals to the
MATLAB workspace

This section includes the following topics:

Importing Frame-Based Signals
(p. 1-68)

Use the Signal From Workspace
block to create a three-channel,
frame-based signal and import it
into your model.

Exporting Frame-Based Signals
(p. 1-71)

Use the Signal To Workspace block to
export a three-channel, frame-based
signal into the MATLAB workspace.

Importing Frame-Based Signals
The Signal From Workspace block creates a frame-based multichannel signal
when the Signal parameter is a matrix, and the Samples per frame
parameter, M, is greater than 1. Beginning with the first M rows of the
matrix, the block releases M rows of the matrix (that is, one frame from each
channel) to the output port every M*Ts seconds. Therefore, if the Signal
parameter specifies a W-by-N workspace matrix, the Signal From Workspace
block outputs a series of M-by-N matrices representing N channels. The
workspace matrix must be oriented so that its columns represent the channels
of the signal.

1-68

Importing and Exporting Frame-Based Signals

The figure below is a graphical illustration of this process for a 6-by-4
workspace matrix, A, and a frame size of 2.

Note Although independent channels are generally represented as columns, a
single-channel signal can be represented in the workspace as either a column
vector or row vector. The output from the Signal From Workspace block is a
column vector in both cases.

In the following example, you use the Signal From Workspace block to create
a three-channel frame-based signal and import it into the model:

1 Open the Signal From Workspace Example 5 model by typing

doc_importfbsigs

at the MATLAB command line.

dsp_examples_A = [1:100;-1:-1:-100]'; % 100-by-2 matrix
dsp_examples_B = 5*ones(100,1); % 100-by-1 column vector

The variable called dsp_examples_A represents a two-channel signal
with 100 samples, and the variable called dsp_examples_B represents a
one-channel signal with 100 samples.

1-69

1 Working with Signals

Also, the following variables are defined in the MATLAB workspace:

2 Double-click the Signal From Workspace block. Set the block parameters
as follows, and then click OK:

• Signal parameter to [dsp_examples_A dsp_examples_B]

• Sample time parameter to 1

• Samples per frame parameter to 4

• Form output after final data value parameter to Setting to zero

Based on these parameters, the Signal From Workspace block outputs
a frame-based signal with a frame size of 4 and a sample period of 1
second. The signal’s frame period is 4 seconds. The Signal parameter
uses the standard MATLAB syntax for horizontally concatenating
matrices to append column vector dsp_examples_B to the right of matrix
dsp_examples_A. After the block has output the signal, all subsequent
outputs have a value of zero.

1-70

Importing and Exporting Frame-Based Signals

3 Run the model.

The figure below is a graphical representation of how your three-channel,
frame-based signal is imported into your model.

You have now successfully imported a three-channel frame-based signal into
your model using the Signal From Workspace block.

Exporting Frame-Based Signals
The Signal To Workspace and Triggered To Workspace blocks are the primary
blocks for exporting signals of all dimensions from a Simulink model to the
MATLAB workspace.

A frame-based signal with N channels and frame size M is represented by a
sequence of M-by-N matrices. When the input to the Signal To Workspace
block is a frame-based signal, the block creates an P-by-N array in the
MATLAB workspace containing the P most recent samples from each channel.
The number of rows, P, is specified by the Limit data points to last
parameter. The newest samples are added at the bottom of the matrix.

1-71

1 Working with Signals

The following figure is a graphical illustration of this process for three
consecutive frames of a frame-based signal with a frame size of 2 that is
exported to matrix A in the MATLAB workspace.

In the following example, you use a Signal To Workspace block to export a
frame-based signal to the MATLAB workspace:

1 Open the Signal From Workspace Example 7 model by typing
doc_exportfbsigs at the MATLAB command line.

1-72

Importing and Exporting Frame-Based Signals

Also, the following variables are defined in the MATLAB workspace:

The variable called dsp_examples_A represents a two-channel signal
with 100 samples, and the variable called dsp_examples_B represents a
one-channel signal with 100 samples.

dsp_examples_A = [1:100;-1:-1:-100]'; % 100-by-2 matrix
dsp_examples_B = 5*ones(100,1); % 100-by-1 column vector

2 Double-click the Signal From Workspace block. Set the block parameters
as follows, and then click OK:

• Signal = [dsp_examples_A dsp_examples_B]

• Sample time = 1

• Samples per frame = 4

• Form output after final data value = Setting to zero

1-73

1 Working with Signals

Based on these parameters, the Signal From Workspace block outputs
a frame-based signal with a frame size of 4 and a sample period of 1
second. The signal’s frame period is 4 seconds. The Signal parameter
uses the standard MATLAB syntax for horizontally concatenating
matrices to append column vector dsp_examples_B to the right of matrix
dsp_examples_A. After the block has output the signal, all subsequent
outputs have a value of zero.

3 Double-click the Signal To Workspace block. Set the block parameters as
follows, and then click OK:

• Variable name = dsp_examples_yout

• Limit data points to last = inf

• Decimation = 1

• Frames = Concatenate frame (2-D array)

Based on these parameters, the Signal To Workspace block exports its
frame-based input signal to a variable called dsp_examples_yout in the
MATLAB workspace. The workspace variable can grow indefinitely large
in order to capture all of the input data. The signal is not decimated before
it is exported to the MATLAB workspace, and each input frame is vertically
concatenated to the previous frame to produce a 2-D array output.

4 Run the model.

The following figure is a graphical representation of the model’s behavior
during simulation.

1-74

Importing and Exporting Frame-Based Signals

5 At the MATLAB command line, type dsp_examples_yout.

The output is shown below:

dsp_examples_yout =

1 -1 5
2 -2 5
3 -3 5
4 -4 5
5 -5 5
6 -6 5
7 -7 5
8 -8 5
9 -9 5

10 -10 5
11 -11 5
12 -12 5

The frames of the signal are concatenated to form a two-dimensional array.

1-75

1 Working with Signals

You have now successfully output a frame-based signal to the MATLAB
workspace using the Signal To Workspace block.

1-76

2

Advanced Signal Concepts

This chapter helps you understand how to inspect and convert sample and
frame rates. It also explains how to change a sample-based signal into a
frame-based signal. Finally, it discusses the concept of delay and describes
how this delay can be minimized.

Inspecting Sample Rates and Frame
Rates (p. 2-2)

Learn how to determine the sample
rates and frame rates of your model

Converting Sample and Frame Rates
(p. 2-12)

Learn how operations such as
direct rate conversion and frame
rebuffering impact the sample and
frame rates if your signal.

Converting Frame Status (p. 2-34) Convert sample-based signals into
frame-based signals and vice versa

Delay and Latency (p. 2-50) Configure Simulink to minimize
delay and increase simulation
performance

2 Advanced Signal Concepts

Inspecting Sample Rates and Frame Rates
When constructing a frame-based or multirate model, it is often helpful to
check the rates that Simulink computes for different signals. The two basic
ways to inspect the sample rates and frame rates in a Simulink model are the
Probe block and sample time color coding. Use the Probe block if you want to
view the sample or frame period of a signal. Use sample time color coding if
you want to view the sample or frame rate of a signal.

This section includes the following topics:

Sample Rate and Frame Rate
Concepts (p. 2-2)

Review the definitions of frame
period, sample period, frame rate,
and sample rate

Inspecting Sample-Based Signals
Using the Probe Block (p. 2-4)

Display the sample period of a
sample-based signal

Inspecting Frame-Based Signals
Using the Probe Block (p. 2-6)

Display the frame period of a
frame-based signal

Inspecting Sample-Based Signals
Using Color Coding (p. 2-8)

Display the sample rate of a
sample-based signal

Inspecting Frame-Based Signals
Using Color Coding (p. 2-9)

Display the frame period of a
frame-based signal

Sample Rate and Frame Rate Concepts
Sample rates and frame rates are important issues in most signal processing
models. This is especially true with systems that incorporate rate conversions.
Fortunately, in most cases when you build a Simulink model, you only need
to set sample rates for the source blocks. Simulink automatically computes
the appropriate sample rates for the blocks that are connected to the source
blocks. Nevertheless, it is important to become familiar with the sample rate
and frame rate concepts as they apply to Simulink models.

The input frame period (Tfi) of a frame-based signal is the time interval
between consecutive vector or matrix inputs to a block. Similarly, the
output frame period (Tfo) is the time interval at which the block updates the
frame-based vector or matrix value at the output port.

2-2

Inspecting Sample Rates and Frame Rates

In contrast, the sample period, Ts, is the time interval between individual
samples in a frame, this value is shorter than the frame period when the
frame size is greater than 1. The sample period of a frame-based signal is the
quotient of the frame period and the frame size, M:

T T Ms f= /

More specifically, the sample periods of inputs (Tsi) and outputs (Tso) are
related to their respective frame periods by

T T Msi fi i= /

T T Mso fo o= /

where Mi and Mo are the input and output frame sizes, respectively.

The illustration below shows a single-channel, frame-based signal with a
frame size (Mi) of 4 and a frame period (Tfi) of 1. The sample period, Tsi, is
therefore 1/4, or 0.25 second.

The frame rate of a signal is the reciprocal of the frame period. For instance,

the input frame rate would be 1 / Tfi . Similarly, the output frame rate would

be 1 / Tfo .

The sample rate of a signal is the reciprocal of the sample period. For

instance, the sample rate would be 1 / Ts .

In most cases, the sequence sample period Tsi is most important, while the
frame rate is simply a consequence of the frame size that you choose for

2-3

2 Advanced Signal Concepts

the signal. For a sequence with a given sample period, a larger frame size
corresponds to a slower frame rate, and vice versa.

Inspecting Sample-Based Signals Using the Probe
Block
You can use the Probe block to display the sample period of a sample-based
signal. For sample-based signals, the Probe block displays the label Ts, the
sample period of the sequence, followed by a two-element vector. The left
element is the period of the signal being measured. The right element is the
signal’s sample time offset, which is usually 0.

Note Simulink offers the ability to shift a signal’s sample times by an
arbitrary value, which is equivalent to shifting the signal’s phase by a
fractional sample period. However, sample-time offsets are rarely used in
signal processing systems, and blocks from Signal Processing Blockset do
not support them.

In this example, you use the Probe block to display the sample period of a
sample-based signal:

1 At the MATLAB command prompt, type doc_probe_tut1.

The Probe Example 1 model opens.

2-4

Inspecting Sample Rates and Frame Rates

2 Run the model.

The figure below illustrates how the Probe blocks display the sample period
of the signal before and after each upsample operation.

2-5

2 Advanced Signal Concepts

As displayed by the Probe blocks, the output from the Signal From
Workspace block is a sample-based signal with a sample period of 1 second.
The output from the first Upsample block has a sample period of 0.5
second, and the output from the second Upsample block has a sample
period of 0.25 second.

Inspecting Frame-Based Signals Using the Probe
Block
You can use the Probe block to display the frame period of a frame-based
signal. For frame-based signals, the block displays the label Tf, the frame
period of the sequence, followed by a two-element vector. The left element is
the period of the signal being measured. The right element is the signal’s
sample time offset, which is usually 0.

Note Simulink offers the ability to shift a signal’s sample times by an
arbitrary value, which is equivalent to shifting the signal’s phase by a
fractional sample period. However, sample-time offsets are rarely used in
signal processing systems, and blocks from Signal Processing Blockset do
not support them.

In this example, you use the Probe block to display the frame period of a
frame-based signal:

1 At the MATLAB command prompt, type doc_probe_tut2.

The Probe Example 2 model opens.

2-6

Inspecting Sample Rates and Frame Rates

2 Run the model.

The figure below illustrates how the Probe blocks display the frame period
of the signal before and after each upsample operation.

2-7

2 Advanced Signal Concepts

As displayed by the Probe blocks, the output from the Signal From
Workspace block is a frame-based signal with a frame period of 16 seconds.
The output from the first Upsample block has a frame period of 8 seconds,
and the output from the second Upsample block has a sample period of 4
seconds.

Note that the sample rate conversion is implemented through a change in the
frame period rather than the frame size. This is because the Frame-based
mode parameter in the Upsample blocks is set to Maintain input frame
size rather than Maintain input frame rate.

Inspecting Sample-Based Signals Using Color Coding
In the following example, you use sample time color coding to view the sample
rate of a sample-based signal:

1 At the MATLAB command prompt, type doc_color_tut1.

The Sample Time Color Example 1 model opens.

2 From the Format menu, point to Port/Signal Displays, and select
Sample Time Colors.

2-8

Inspecting Sample Rates and Frame Rates

This selection turns on sample time color coding. Simulink now assigns
each sample rate a different color.

3 Run the model.

The model should now look similar to the following figure:

Every sample-based signal in this model has a different sample rate.
Therefore, each signal is assigned a different color.

For more information about sample time color coding, see “Displaying Sample
Time Colors” in the Simulink documentation.

Inspecting Frame-Based Signals Using Color Coding
In this example, you use sample time color coding to view the frame rate of
a frame-based signal:

1 At the MATLAB command prompt, type doc_color_tut2.

The Sample Time Color Example 2 model opens.

2-9

2 Advanced Signal Concepts

2 To turn on sample time color coding, from the Format menu, point to
Port/Signal Displays, and select Sample Time Colors.

Simulink now assigns each frame rate a different color.

3 Run the model.

The model should now look similar to the following figure:

Because the Frame-based mode parameter in the Upsample blocks is
set to Maintain input frame size rather than Maintain input frame
rate, each Upsample block changes the frame rate. Therefore, each
frame-based signal in the model is assigned a different color.

4 Double-click on each Upsample block and change the Frame-based mode
parameter to Maintain input frame rate.

5 Run the model.

2-10

Inspecting Sample Rates and Frame Rates

Every signal is coded with the same color. Therefore, every signal in the
model now has the same frame rate.

For more information about sample time color coding, see “Displaying Sample
Time Colors” in the Simulink documentation.

2-11

2 Advanced Signal Concepts

Converting Sample and Frame Rates
There are two common types of operations that impact the frame and sample
rates of a signal: direct rate conversion and frame rebuffering. Direct rate
conversions, such as upsampling and downsampling, can be implemented by
altering either the frame rate or the frame size of a signal. Frame rebuffering,
which is used alter the frame size of a signal in order to improve simulation
throughput, usually changes either the sample rate or frame rate of the signal
as well.

This section includes the following topics:

Rate Conversion Blocks (p. 2-13) List of the principal rate conversion
blocks in Signal Processing Blockset

Rate Conversion by Frame-Rate
Adjustment (p. 2-14)

Use the Downsample block to
downsample a signal by changing its
frame rate

Rate Conversion by Frame-Size
Adjustment (p. 2-16)

Use the Downsample block to
downsample a signal by changing its
frame size

Avoiding Unintended Rate
Conversion (p. 2-19)

Learn where rate conversions can
occur in a model in order to avoid
misleading results

Frame Rebuffering Blocks (p. 2-25) List and descriptions of the principal
frame rebuffering blocks in Signal
Processing Blockset

Buffering with Preservation of the
Signal (p. 2-28)

Use the Buffer block to rebuffer a
signal from a smaller to a larger
frame size

Buffering with Alteration of the
Signal (p. 2-31)

Use the Buffer block to rebuffer a
signal from a smaller to a larger
frame size using overlapping frames

2-12

Converting Sample and Frame Rates

Rate Conversion Blocks
The following table lists the principal rate conversion blocks in Signal
Processing Blockset. Blocks marked with an asterisk (*) offer the option of
changing the rate by either adjusting the frame size or frame rate.

Block Library

Downsample * Signal Operations

Dyadic Analysis Filter Bank Filtering / Multirate Filters

Dyadic Synthesis Filter Bank Filtering / Multirate Filters

FIR Decimation * Filtering / Multirate Filters

FIR Interpolation * Filtering / Multirate Filters

FIR Rate Conversion Filtering / Multirate Filters

Repeat * Signal Operations

Upsample * Signal Operations

Direct Rate Conversion
Rate conversion blocks accept an input signal at one sample rate, and
propagate the same signal at a new sample rate. Several of these blocks
contain a Frame-based mode parameter offering two options for adjusting
the sample rate of the signal:

• Maintain input frame rate: Change the sample rate by changing the
frame size (that is, Mo ≠ Mi), but keep the frame rate constant (Tfo = Tfi).

• Maintain input frame size: Change the sample rate by changing the
output frame rate (that is Tfo ≠ Tfi), but keep the frame size constant
(Mo = Mi).

The setting of this parameter does not affect sample-based inputs.

2-13

2 Advanced Signal Concepts

Note When a Simulink model contains signals with various frame rates, the
model is called multirate. You can find a discussion of multirate models in
“Excess Algorithmic Delay (Tasking Latency)” on page 2-58. Also see “Models
with Multiple Sample Rates” in the Real-Time Workshop documentation.

Rate Conversion by Frame-Rate Adjustment
One way to change the sample rate of a signal, 1/Tso, is to change the output
frame rate (Tfo ≠ Tfi), while keeping the frame size constant (Mo = Mi). Note
that the sample rate of a signal is defined as 1/Tso = Mo/Tfo:

1 At the MATLAB command prompt, type doc_downsample_tut1.

The Downsample Example T1 model opens.

2 From the Format menu, point to Port/Signal Displays, and select Signal
Dimensions.

2-14

Converting Sample and Frame Rates

When you run the model, the dimensions the signals appear next to the
lines connecting the blocks.

3 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

4 Set the block parameters as follows:

• Sample time = 0.125

• Samples per frame = 8

Based on these parameters, the Signal From Workspace block outputs a
frame-based signal with a sample period of 0.125 second and a frame size
of 8.

5 Save these parameters and close the dialog box by clicking OK.

6 Double-click the Downsample block. The Block Parameters:
Downsample dialog box opens.

7 Set the Frame-based mode parameter to Maintain input frame size,
and then click OK.

The Downsample block is configured to downsample the signal by changing
the frame rate rather than the frame size.

8 Run the model.

After the simulation, the model should look similar to the following figure.

2-15

2 Advanced Signal Concepts

Because T M Tfi i si= × , the input frame period, Tfi , is Tfi = × =8 0 125 1.
second. This value is displayed by the first Probe block. Therefore the input

frame rate, 1 / Tfi , is also 1 second.

The second Probe block in the model verifies that the output from the

Downsample block has a frame period, 1 / Tfo , of 2 seconds, twice the frame

period of the input. However, because the frame rate of the output, 1 Tfo ,
is 0.5 second, the Downsample block actually downsampled the original
signal to half its original rate. As a result, the output sample period,

T T Mso fo o= / , is doubled to 0.25 second without any change to the frame
size. The signal dimensions in the model confirm that the frame size did
not change.

Rate Conversion by Frame-Size Adjustment
One way to change the sample rate of a signal is by changing the frame size
(that is Mo ≠ Mi), but keep the frame rate constant (Tfo = Tfi). Note that the
sample rate of a signal is defined as 1/Tso = Mo/Tfo:

2-16

Converting Sample and Frame Rates

1 At the MATLAB command prompt, type doc_downsample_tut2.

The Downsample Example T2 model opens.

2 From the Format menu, point to Port/Signal Displays, and select Signal
Dimensions.

When you run the model, the dimensions the signals appear next to the
lines connecting the blocks.

3 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

4 Set the block parameters as follows:

• Sample time = 0.125

• Samples per frame = 8

Based on these parameters, the Signal From Workspace block outputs a
frame-based signal with a sample period of 0.125 second and a frame size
of 8.

5 Save these parameters and close the dialog box by clicking OK.

2-17

2 Advanced Signal Concepts

6 Double-click the Downsample block. The Block Parameters:
Downsample dialog box opens.

7 Set the Frame-based mode parameter to Maintain input frame rate,
and then click OK.

The Downsample block is configured to downsample the signal by changing
the frame size rather than the frame rate.

2-18

Converting Sample and Frame Rates

8 Run the model.

After the simulation, the model should look similar to the following figure.

Because T M Tfi i si= × , the input frame period, Tfi , is Tfi = × =8 0 125 1.
second. This value is displayed by the first Probe block. Therefore the input

frame rate, 1 / Tfi , is also 1 second.

The Downsample block downsampled the input signal to half its original
frame size. The signal dimensions of the output of the Downsample
block confirm that the downsampled output has a frame size of 4, half
the frame size of the input. As a result, the sample period of the output,

T T Mso fo o= / , now has a sample period of 0.25 second. This process

occurred without any change to the frame rate (T Tfi fo=).

Avoiding Unintended Rate Conversion
It is important to be aware of where rate conversions occur in a model. In a
few cases, unintentional rate conversions can produce misleading results:

2-19

2 Advanced Signal Concepts

1 At the MATLAB command prompt, type doc_vectorscope_tut1.

The Vector Scope Example model opens.

2 Double-click the upper Sine Wave block. The Block Parameters: Sine
Wave dialog box opens.

3 Set the block parameters as follows:

• Frequency (Hz) = 1

• Sample time = 0.1

• Samples per frame = 128

Based on the Sample time and the Samples per frame parameters,
the Sine Wave outputs a sinusoid with a frame period of 128*0.1 or 12.8
seconds.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the lower Sine Wave block.

6 Set the block parameters as follows, and then click OK:

• Frequency (Hz) = 2

• Sample time = 0.1

• Samples per frame = 128

Based on the Sample time and the Samples per frame parameters,
the Sine Wave outputs a sinusoid with a frame period of 128*0.1 or 12.8
seconds.

7 Double-click the Magnitude FFT block. The Block Parameters:
Magnitude FFT dialog box opens.

8 Select the Inherit FFT length from input dimensions check box, and
then click OK.

This setting instructs the block to use the input frame size (128) as the FFT
length (which is also the output size).

9 Double-click the Vector Scope block.

2-20

Converting Sample and Frame Rates

10 Set the block parameters as follows, and then click OK:

• Click the Scope Properties tab.

• Input domain = Frequency

• Click the Axis Properties tab.

• Minimum Y-limit = -10

• Maximum Y-limit = 40

11 Run the model.

The model should now look similar to the following figure. Note that the
signal leaving the Magnitude FFT block is 128-by-1.

2-21

2 Advanced Signal Concepts

The Vector Scope window displays the magnitude FFT of a signal
composed of two sine waves, with frequencies of 1 Hz and 2 Hz.

The Vector Scope block uses the input frame size (128) and period (12.8) to
deduce the original signal’s sample period (0.1), which allows it to correctly
display the peaks at 1 Hz and 2 Hz.

12 Double-click the Magnitude FFT block. The Block Parameters:
Magnitude FFT dialog box opens.

13 Set the block parameters as follows:

• Clear the Inherit FFT length from input dimensions check box.

• Set the FFT length parameter to 256.

2-22

Converting Sample and Frame Rates

Based on these parameters, the Magnitude FFT block zero-pads the
length-128 input frame to a length of 256 before performing the FFT.

14 Run the model.

The model should now look similar to the following figure. Note that the
signal leaving the Magnitude FFT block is 256-by-1.

2-23

2 Advanced Signal Concepts

The Vector Scope window displays the magnitude FFT of a signal
composed of two sine waves, with frequencies of 2 Hz and 4 Hz.

In this case, based on the input frame size (256) and frame period (12.8),
the Vector Scope block incorrectly calculates the original signal’s sample
period to be (12.8/256) or 0.05 second. As a result, the spectral peaks
appear incorrectly at 2 Hz and 4 Hz rather than 1 Hz and 2 Hz.

The source of the error described above is unintended rate conversion.
The zero-pad operation performed by the Magnitude FFT block halves the
sample period of the sequence by appending 128 zeros to each frame. To
calculate the spectral peaks correctly, the Vector Scope block needs to know
the sample period of the original signal.

15 To correct for the unintended rate conversion, double-click the Vector Scope
block.

2-24

Converting Sample and Frame Rates

16 Set the block parameters as follows:

• Click the Axis Properties tab.

• Clear the Inherit sample time from input check box.

• Set the Sample time of original time series parameter to the actual
sample period of 0.1.

17 Run the model.

The Vector Scope block now accurately plots the spectral peaks at 1 Hz
and 2 Hz.

In general, when you zero-pad or overlap buffers, you are changing the sample
period of the signal. If you keep this in mind, you can anticipate and correct
problems such as unintended rate conversion.

Frame Rebuffering Blocks
Sometimes you might need to rebuffer a signal to a new frame size at some
point in a model. For example, your data acquisition hardware may internally
buffer the sampled signal to a frame size that is not optimal for the signal
processing algorithm in the model. In this case, you would want to rebuffer
the signal to a frame size more appropriate for the intended operations
without introducing any change to the data or sample rate.

The following table lists the principal buffering blocks in Signal Processing
Blockset.

Block Library

Buffer Signal Management/ Buffers

Delay Line Signal Management/ Buffers

Unbuffer Signal Management/ Buffers

Variable Selector Signal Management/ Indexing

Blocks for Frame Rebuffering with Preservation of the Signal
Buffering operations provide another mechanism for rate changes in signal
processing models. The purpose of many buffering operations is to adjust

2-25

2 Advanced Signal Concepts

the frame size of the signal, M, without altering the signal’s sample rate Ts.
This usually results in a change to the signal’s frame rate, Tf, according to
the following equation:

T MTf s=

However, the equation above is only true if no samples are added or deleted
from the original signal. Therefore, the equation above does not apply to
buffering operations that generate overlapping frames, that only partially
unbuffer frames, or that alter the data sequence by adding or deleting samples.

There are two blocks in the Buffers library that can be used to change a
signal’s frame size without altering the signal itself:

• Buffer — redistributes signal samples to a larger or smaller frame size

• Unbuffer — unbuffers a frame-based signal to a sample-based signal
(frame size = 1)

The Buffer block preserves the signal’s data and sample period only when its
Buffer overlap parameter is set to 0. The output frame period, Tfo, is

T
M T

Mfo
o fi

i
=

where Tfi is the input frame period, Mi is the input frame size, and Mo is
the output frame size specified by the Output buffer size (per channel)
parameter.

The Unbuffer block unbuffers a frame-based signal to its sample-based
equivalent, and always preserves the signal’s data and sample period

T T Mso fi i= /

where Tfi and Mi are the period and size, respectively, of the frame-based
input.

2-26

Converting Sample and Frame Rates

Both the Buffer and Unbuffer blocks preserve the sample period of the
sequence in the conversion (Tso = Tsi).

Blocks for Frame Rebuffering with Alteration of the Signal
Some forms of buffering alter the signal’s data or sample period in addition to
adjusting the frame size. This type of buffering is desirable when you want to
create sliding windows by overlapping consecutive frames of a signal, or select
a subset of samples from each input frame for processing.

The blocks that alter a signal while adjusting its frame size are listed below.
In this list, Tsi is the input sequence sample period, and Tfi and Tfo are the
input and output frame periods, respectively:

• The Buffer block adds duplicate samples to a sequence when the Buffer
overlap parameter, L, is set to a nonzero value. The output frame period is
related to the input sample period by

T M L Tfo o si= −()

where Mo is the output frame size specified by the Output buffer size
(per channel) parameter. As a result, the new output sample period is

T
M L T

Mso
o si

o
=

−()

• The Delay Line block adds duplicate samples to the sequence when the
Delay line size parameter, Mo, is greater than 1. The output and input
frame periods are the same, Tfo = Tfi = Tsi, and the new output sample
period is

T
T
Mso

si

o
=

• The Variable Selector block can remove, add, and/or rearrange samples in
the input frame when Select is set to Rows. The output and input frame
periods are the same, Tfo = Tfi, and the new output sample period is

2-27

2 Advanced Signal Concepts

T
M T
Mso
i si

o
=

where Mo is the length of the block’s output, determined by the Elements
vector.

In all of these cases, the sample period of the output sequence is not equal to
the sample period of the input sequence.

Buffering with Preservation of the Signal
In the following example, a signal with a sample period of 0.125 second is
rebuffered from a frame size of 8 to a frame size of 16. This rebuffering
process doubles the frame period from 1 to 2 seconds, but does not change the
sample period of the signal (Tso = Tsi = 0.125). The process also does not add or
delete samples from the original signal:

2-28

Converting Sample and Frame Rates

1 At the MATLAB command prompt, type doc_buffer_tut1.

The Buffer Example T1 model opens.

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the parameters as follows:

• Signal = 1:1000

• Sample time = 0.125

• Samples per frame = 8

• Form output after final data value = Setting to zero

Based on these parameters, the Signal from Workspace block outputs a
frame-based signal with a sample period of 0.125 second. Each output
frame contains eight samples.

4 Save these parameters and close the dialog box by clicking OK.

2-29

2 Advanced Signal Concepts

5 Double-click the Buffer block. The Block Parameters: Buffer dialog
box opens.

6 Set the parameters as follows, and then click OK:

• Output buffer size (per channel) = 16

• Buffer overlap = 0

• Initial conditions = 0

Based on these parameters, the Buffer block rebuffers the signal from a
frame size of 8 to a frame size of 16.

7 Run the model.

The following figure shows the model after the simulation has stopped.

Note that the input to the Buffer block has a frame size of 8 and the output
of the block has a frame size of 16. As shown by the Probe blocks, the
rebuffering process doubles the frame period from 1 to 2 seconds.

2-30

Converting Sample and Frame Rates

Buffering with Alteration of the Signal
Some forms of buffering alter the signal’s data or sample period in addition to
adjusting the frame size. In the following example, a signal with a sample
period of 0.125 second is rebuffered from a frame size of 8 to a frame size
of 16 with a buffer overlap of 4:

1 At the MATLAB command prompt, type doc_buffer_tut2.

The Buffer Example T2 model opens.

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the parameters as follows:

• Signal = 1:1000

• Sample time = 0.125

• Samples per frame = 8

• Form output after final data value = Setting to zero

2-31

2 Advanced Signal Concepts

Based on these parameters, the Signal from Workspace block outputs a
frame-based signal with a sample period of 0.125 second. Each output
frame contains eight samples.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Buffer block. The Block Parameters: Buffer dialog
box opens.

6 Set the parameters as follows, and then click OK:

• Output buffer size (per channel) = 16

• Buffer overlap = 4

• Initial conditions = 0

Based on these parameters, the Buffer block rebuffers the signal from a
frame size of 8 to a frame size of 16. Also, after the initial output, the first
four samples of each output frame are made up of the last four samples
from the previous output frame.

2-32

Converting Sample and Frame Rates

7 Run the model.

The following figure shows the model after the simulation has stopped.

Note that the input to the Buffer block has a frame size of 8 and the output
of the block has a frame size of 16. The relation for the output frame period
for the Buffer block is

T M L Tfo o si= −()

Tfo is (16-4)*0.125, or 1.5 seconds, as confirmed by the second Probe block.
The sample period of the signal at the output of the Buffer block is no

longer 0.125 second. It is now T T Mso fo o= = =/ . / .1 5 16 0 0938 second.
Thus, both the signal’s data and the signal’s sample period have been
altered by the buffering operation.

2-33

2 Advanced Signal Concepts

Converting Frame Status
The frame status of a signal refers to whether the signal is sample based or
frame based. In a Simulink model, the frame status is symbolized by a single
line ,→, for a sample-based signal and a double line, ⇒ for a frame-based
signal. One way to convert a sample-based signal to a frame-based signal
is by using the Buffer block. You can convert a frame-based signal to a
sample-based signal using the Unbuffer block. To change the frame status of
a signal without performing a buffering operation, use the Frame Conversion
block in the Signal Attributes library.

This section includes the following topics:

Buffering Sample-Based Signals into
Frame-Based Signals (p. 2-35)

Use the Buffer block to buffer a
two-channel sample-based signal
into a two-channel frame-based
signal

Buffering Sample-Based Signals into
Frame-Based Signals with Overlap
(p. 2-38)

Use the Buffer block to buffer a
four-channel, sample-based signal
into a four-channel frame-based
signal. Because of the buffer overlap,
the input sample period is not
conserved.

Buffering Frame-Based Signals into
Other Frame-Based Signals (p. 2-42)

Use the Buffer block to buffer a
two-channel frame-based signal
with frame size 4 into a frame-based
signal with frame size 3. Because of
the buffer overlap, the input sample
period is not conserved.

Buffering Delay and Initial
Conditions (p. 2-45)

Learn how to use the
rebuffer_delay function to
calculate the delay introduced by the
Buffer and Unbuffer blocks during
multitasking operations

Unbuffering Frame-Based Signals
into Sample-Based Signals (p. 2-46)

Use the Unbuffer block to unbuffer a
two-channel frame-based signal into
a two-channel sample-based signal

2-34

Converting Frame Status

Buffering Sample-Based Signals into Frame-Based
Signals
Multichannel sample-based and frame-based signals can be buffered into
multichannel frame-based signals using the Buffer block.

The following figure is a graphical representation of a sample-based signal
being converted into a frame-based signal by the Buffer block.

In the following example, a two-channel sample-based signal is buffered into
a two-channel frame-based signal using a Buffer block:

2-35

2 Advanced Signal Concepts

1 At the MATLAB command prompt, type doc_buffer_tut.

The Buffer Example model opens.

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the parameters as follows:

• Signal = [1:10;-1:-1:-10]'

• Sample time = 1

• Samples per frame = 1

• Form output after final data value = Setting to zero

Based on these parameters, the Signal from Workspace block outputs a
sample-based signal with a sample period of 1 second. Because you set the
Samples per frame parameter setting to 1, the Signal From Workspace
block outputs one two-channel sample at each sample time.

2-36

Converting Frame Status

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Buffer block. The Block Parameters: Buffer dialog
box opens.

6 Set the parameters as follows:

• Output buffer size (per channel) = 4

• Buffer overlap = 0

• Initial conditions = 0

Because you set the Output buffer size parameter to 4, the Buffer block
outputs a frame-based signal with frame size 4.

7 Run the model.

Note that the input to the Buffer block is sample based (represented as a
single line) while the output is frame-based (represented by a double line).

The figure below is a graphical interpretation of the model behavior during
simulation.

Note Alternatively, you can set the Samples per frame parameter of the
Signal From Workspace block to 4 and create the same frame-based signal
shown above without using a Buffer block. The Signal From Workspace
block performs the buffering internally, in order to output a two-channel
frame-based signal.

2-37

2 Advanced Signal Concepts

Buffering Sample-Based Signals into Frame-Based
Signals with Overlap
In some cases it is useful to work with data that represents overlapping
sections of an original sample-based or frame-based signal. For example, in
estimating the power spectrum of a signal, it is often desirable to compute the
FFT of overlapping sections of data. Overlapping buffers are also needed in
computing statistics on a sliding window, or for adaptive filtering.

The Buffer overlap parameter of the Buffer block specifies the number of
overlap points, L. In the overlap case (L > 0), the frame period for the output
is (Mo-L)*Tsi, where Tsi is the input sample period and Mo is the Buffer size.

Note Set the Buffer overlap parameter to a negative value to achieve
output frame rates slower than in the nonoverlapping case. The output frame
period is still Tsi*(Mo-L), but now with L < 0. Only the Mo newest inputs are
included in the output buffers. The previous L inputs are discarded.

In the following example, a four-channel sample-based signal with sample
period 1 is buffered to a frame-based signal with frame size 3 and frame
period 2. Because of the buffer overlap, the input sample period is not
conserved, and the output sample period is 2/3:

2-38

Converting Frame Status

1 At the MATLAB command prompt, type doc_buffer_tut3.

The Buffer Example T3 model opens.

Also, the variable dsp_examples_A is loaded into the MATLAB workspace.
This variable is defined as follows:

dsp_examples_A = [1 1 5 -1; 2 1 5 -2; 3 0 5 -3; 4 0 5 -4; 5 1 5 -5; 6 1 5 -6];

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

• Signal = dsp_examples_A

• Sample time = 1

2-39

2 Advanced Signal Concepts

• Samples per frame = 1

• Form output after final data value by = Setting to zero

Based on these parameters, the Signal from Workspace block outputs a
sample-based signal with a sample period of 1 second. Because you set the
Samples per frame parameter setting to 1, the Signal From Workspace
block outputs one four-channel sample at each sample time.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Buffer block. The Block Parameters: Buffer dialog
box opens.

6 Set the block parameters as follows, and then click OK:

• Output buffer size (per channel) = 3

• Buffer overlap = 1

• Initial conditions = 0

Because you set the Output buffer size parameter to 3, the Buffer block
outputs a frame-based signal with frame size 3. Also, because you set the
Buffer overlap parameter to 1, the last sample from the previous output
frame is the first sample in the next output frame.

2-40

Converting Frame Status

7 Run the model.

Note that the input to the Buffer block is sample based (represented as a
single line) while the output is frame based (represented by a double line).

The following figure is a graphical interpretation of the model’s behavior
during simulation.

8 At the MATLAB command prompt, type dsp_examples_yout.

The following is displayed in the MATLAB Command Window.

dsp_examples_yout =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 1 5 -1
2 1 5 -2
2 1 5 -2
3 0 5 -3
4 0 5 -4

2-41

2 Advanced Signal Concepts

4 0 5 -4
5 1 5 -5
6 1 5 -6
6 1 5 -6
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Notice that the inputs do not begin appearing at the output until the fifth
row, the second row of the second frame. This is due to the block’s latency.

See “Excess Algorithmic Delay (Tasking Latency)” on page 2-58 for general
information about algorithmic delay. For instructions on how to calculate
buffering delay, see “Buffering Delay and Initial Conditions” on page 2-45.

Buffering Frame-Based Signals into Other
Frame-Based Signals
In the following example, a two-channel frame-based signal with frame size 4
is rebuffered to a frame-based signal with frame size 3 and frame period 2.
Because of the overlap, the input sample period is not conserved, and the
output sample period is 2/3:

2-42

Converting Frame Status

1 At the MATLAB command prompt, type doc_buffer_tut4.

The Buffer Example T4 model opens.

Also, the variable dsp_examples_A is loaded into the MATLAB workspace.
This variable is defined as

dsp_examples_A = [1 1; 2 1; 3 0; 4 0; 5 1; 6 1; 7 0; 8 0]

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

• Signal = dsp_examples_A

• Sample time = 1

2-43

2 Advanced Signal Concepts

• Samples per frame = 4

Based on these parameters, the Signal From Workspace block outputs a
two-channel, frame-based signal with a sample period of 1 second and a
frame size of 4.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Buffer block. The Block Parameters: Buffer dialog
box opens.

6 Set the block parameters as follows, and then click OK:

• Output buffer size (per channel) = 3

• Buffer overlap = 1

• Initial conditions = 0

Based on these parameters, the Buffer block outputs a two-channel,
frame-based signal with a frame size of 3.

7 Run the model.

The following figure is a graphical representation of the model’s behavior
during simulation.

Note that the inputs do not begin appearing at the output until the last row
of the third output matrix. This is due to the block’s latency.

2-44

Converting Frame Status

See “Excess Algorithmic Delay (Tasking Latency)” on page 2-58 for general
information about algorithmic delay. For instructions on how to calculate
buffering delay, and see “Buffering Delay and Initial Conditions” on page 2-45.

Buffering Delay and Initial Conditions
In the examples “Buffering Sample-Based Signals into Frame-Based Signals
with Overlap” on page 2-38 and “Buffering Frame-Based Signals into Other
Frame-Based Signals” on page 2-42, the input signal is delayed by a certain
number of samples. The initial output samples correspond to the value
specified for the Initial condition parameter. The initial condition is zero
in both examples mentioned above.

Under most conditions, the Buffer and Unbuffer blocks have some amount of
delay or latency. This latency depends on both the block parameter settings
and the Simulink tasking mode. You can use the rebuffer_delay function
to determine the length of the block’s latency for any combination of frame
size and overlap.

The syntax rebuffer_delay(f,n,m) returns the delay, in samples, introduced
by the buffering and unbuffering blocks during multitasking operations,
where f is the input frame size, n is the Output buffer size parameter
setting, and m is the Buffer overlap parameter setting.

For example, you can calculate the delay for the model discussed in the
“Buffering Frame-Based Signals into Other Frame-Based Signals” on page
2-42 using the following command at the MATLAB command line:

d = rebuffer_delay(4,3,1)
d = 8

This result agrees with the block’s output in that example. Notice that this
model was simulated in Simulink multitasking mode.

For more information about delay, see “Excess Algorithmic Delay (Tasking
Latency)” on page 2-58. For delay information about a specific block, see the
“Latency” section of the block reference page. For more information about the
rebuffer_delay function, see rebuffer_delay.

2-45

2 Advanced Signal Concepts

Unbuffering Frame-Based Signals into Sample-Based
Signals
You can unbuffer multichannel frame-based signals into multichannel
sample-based signals using the Unbuffer block. The Unbuffer block performs
the inverse operation of the Buffer block’s “sample-based to frame-based”
buffering process, and generates an N-channel sample-based output from an
N-channel frame-based input. The first row in each input matrix is always
the first sample-based output.

The following figure is a graphical representation of this process.

The sample period of the sample-based output, Tso, is related to the input
frame period, Tfi, by the input frame size, Mi.

T T Mso fi i= /

The Unbuffer block always preserves the signal’s sample period (Tso = Tsi).
See “Converting Sample and Frame Rates” on page 2-12 for more information
about rate conversions.

2-46

Converting Frame Status

In the following example, a two-channel frame-based signal is unbuffered into
a two-channel sample-based signal:

1 At the MATLAB command prompt, type doc_unbuffer_tut.

The Unbuffer Example model opens.

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

• Signal = [1:10;-1:-1:-10]'

• Sample time = 1

• Samples per frame = 4

• Form output after final data value by = Setting to zero

Based on these parameters, the Signal From Workspace block outputs a
two-channel, frame based-signal with frame size 4.

2-47

2 Advanced Signal Concepts

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Unbuffer block. The Block Parameters: Unbuffer
dialog box opens.

6 Set the Initial conditions parameter to 0, and then click OK.

The Unbuffer block unbuffers the frame-based signal into a two-channel
sample-based signal.

7 Run the model.

The following figures is a graphical representation of what happens during
the model simulation.

Note The Unbuffer block generates initial conditions not shown in the
figure below with the value specified by the Initial conditions parameter.
See the Unbuffer reference page for information about the number of initial
conditions that appear in the output.

8 At the MATLAB command prompt, type dsp_examples_yout.

The following is a portion of the output.

dsp_examples_yout(:,:,1) =

0 0

2-48

Converting Frame Status

dsp_examples_yout(:,:,2) =

0 0

dsp_examples_yout(:,:,3) =

0 0

dsp_examples_yout(:,:,4) =

0 0

dsp_examples_yout(:,:,5) =

1 -1

dsp_examples_yout(:,:,6) =

2 -2

dsp_examples_yout(:,:,7) =

3 -3

The Unbuffer block unbuffers the frame-based signal into a two-channel,
sample-based signal. Each page of the output matrix represents a different
sample time.

2-49

2 Advanced Signal Concepts

Delay and Latency
The two types of delay that affect Simulink models are computational delay
and algorithmic delay. This section explains the cause of each variety of
delay. It describes how you can configure Simulink to minimize delay and
increase simulation performance. It also discusses how to accurately predict
the tasking latency of a particular model.

This section includes the following topics:

Computational Delay (p. 2-50) Learn the cause of computational
delay and how to reduce it

Algorithmic Delay (p. 2-52) Learn the cause of algorithmic delay

Zero Algorithmic Delay (p. 2-52) Work with a block that has no
algorithmic delay

Basic Algorithmic Delay (p. 2-55) Work with a block that has
algorithmic delay

Excess Algorithmic Delay (Tasking
Latency) (p. 2-58)

Explore the block and model
characteristics that can affect the
tasking latency of a particular block

Predicting Tasking Latency (p. 2-60) Use the Upsample block’s block
reference page to predict the tasking
latency of a model

Computational Delay
The computational delay of a block or subsystem is related to the number of
operations involved in executing that block or subsystem. For example, an
FFT block operating on a 256-sample input requires Simulink to perform a
certain number of multiplications for each input frame. The actual amount
of time that these operations consume depends heavily on the performance
of both the computer hardware and underlying software layers, such as
MATLAB and the operating system. Therefore, computational delay for a
particular model can vary from one computer platform to another.

The simulation time represented on a model’s status bar, which can
be accessed via the Simulink Digital Clock block, does not provide any

2-50

Delay and Latency

information about computational delay. For example, according to the
Simulink timer, the FFT mentioned above executes instantaneously, with no
delay whatsoever. An input to the FFT block at simulation time t=25.0 is
processed and output at simulation time t=25.0, regardless of the number of
operations performed by the FFT algorithm. The Simulink timer reflects only
algorithmic delay, not computational delay.

Reducing Computational Delay
There are a number of ways to reduce computational delay without actually
running the simulation on faster hardware. To begin with, you should
familiarize yourself with “Improving Simulation Performance and Accuracy”
in the Simulink documentation, which describes some basic strategies. The
following information discusses several additional options for improving
performance.

A first step in improving performance is to analyze your model, and eliminate
or simplify elements that are adding excessively to the computational load.
Such elements might include scope displays and data logging blocks that you
had put in place for debugging purposes and no longer require. In addition to
these model-specific adjustments, there are a number of more general steps
you can take to improve the performance of any model:

• Use frame-based processing wherever possible. It is advantageous for the
entire model to be frame based. See “Benefits of Frame-Based Processing”
on page 1-17 for more information.

• Use the dspstartup file to tailor Simulink for signal processing models, or
manually make the adjustments described in “Settings in dspstartup.m” in
the Getting Started Signal Processing Blockset documentation.

• Turn off the Simulink status bar by deselecting the Status bar option in
the View menu. Simulation speed will improve, but the time indicator
will not be visible.

• Run your simulation from the MATLAB command line by typing

sim(gcs)

This method of starting a simulation can greatly increase the simulation
speed, but also has several limitations:

2-51

2 Advanced Signal Concepts

- You cannot interact with the simulation (to tune parameters, for
instance).

- You must press Ctrl+C to stop the simulation, or specify start and stop
times.

- There are no graphics updates in M-file S-functions, which include blocks
such as Vector Scope, etc.

• Use Real-Time Workshop® to generate generic real-time (GRT) code
targeted to your host platform, and run the model using the generated
executable file. See the Real-Time Workshop documentation for more
information.

Algorithmic Delay
Algorithmic delay is delay that is intrinsic to the algorithm of a block or
subsystem and is independent of CPU speed. In Signal Processing Blockset
Reference and elsewhere in this guide, the algorithmic delay of a block is
referred to simply as the block’s delay. It is generally expressed in terms of the
number of samples by which a block’s output lags behind the corresponding
input. This delay is directly related to the time elapsed on the Simulink timer
during that block’s execution.

The algorithmic delay of a particular block may depend on both the block
parameter settings and the general Simulink settings. To simplify matters, it
is helpful to categorize a block’s delay using the following categories:

• “Zero Algorithmic Delay” on page 2-52

• “Basic Algorithmic Delay” on page 2-55

• “Excess Algorithmic Delay (Tasking Latency)” on page 2-58

The following topics explain the different categories of delay, and how
the simulation and parameter settings can affect the level of delay that a
particular block experiences.

Zero Algorithmic Delay
The FFT block is an example of a component that has no algorithmic delay.
The Simulink timer does not record any passage of time while the block
computes the FFT of the input, and the transformed data is available at the

2-52

Delay and Latency

output in the same time step that the input is received. There are many other
blocks that have zero algorithmic delay, such as the blocks in the Matrices
and Linear Algebra libraries. Each of those blocks processes its input and
generates its output in a single time step.

In the Signal Processing Blockset Reference blocks are assumed to have zero
delay unless otherwise indicated. If a block has zero delay for one combination
of parameter settings but nonzero delay for another, the block reference page
contains this fact.

The Normalization block is an example of a block with zero algorithmic delay:

1 At the MATLAB command prompt, type doc_normalization_tut.

The Normalization Example T1 model opens.

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

• Signal = 1:100

2-53

2 Advanced Signal Concepts

• Sample time = 1/4

• Samples per frame = 4

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Frame Conversion block. The Block Parameters: Frame
Conversion dialog box opens.

6 Set the Output signal parameter to Sample based, and then click OK.

7 Run the model.

The model prepends the current value of the Simulink timer output from
the Digital Clock block to each output frame. The Frame Conversion block
converts the frame-based signal to a sample-based signal so that the output
in the MATLAB Command Window is more easily readable.

The Signal From Workspace block generates a new frame containing four
samples once every second (Tfo = π*4). The first few output frames are:

(t=0) [1 2 3 4]'
(t=1) [5 6 7 8]'
(t=2) [9 10 11 12]'
(t=3) [13 14 15 16]'
(t=4) [17 18 19 20]'

8 At the MATLAB command prompt, type 'squeeze(dsp_examples_yout)'.

The normalized output, dsp_examples_yout, is converted to an
easier-to-read matrix format. The result, ans, is shown in the following
figure:

ans =

0 0.0333 0.0667 0.1000 0.1333
1.0000 0.0287 0.0345 0.0402 0.0460
2.0000 0.0202 0.0224 0.0247 0.0269
3.0000 0.0154 0.0165 0.0177 0.0189
4.0000 0.0124 0.0131 0.0138 0.0146
5.0000 0.0103 0.0108 0.0113 0.0118

2-54

Delay and Latency

The first column of ans is the Simulink time provided by the Digital Clock
block. You can see that the squared 2-norm of the first input,

[1 2 3 4]' ./ sum([1 2 3 4]'.^2)

appears in the first row of the output (at time t=0), the same time step that
the input was received by the block. This indicates that the Normalization
block has zero algorithmic delay.

Zero Algorithmic Delay and Algebraic Loops
When several blocks with zero algorithmic delay are connected in a feedback
loop, Simulink may report an algebraic loop error and performance may
generally suffer. You can prevent algebraic loops by injecting at least one
sample of delay into a feedback loop , for example, by including a Delay block
with Delay > 0. For more information, see “Algebraic Loops” in the Simulink
documentation.

Basic Algorithmic Delay
The Variable Integer Delay block is an example of a block with algorithmic
delay. In the following example, you use this block to demonstrate this concept:

1 At the MATLAB command prompt, type doc_variableintegerdelay_tut.

The Variable Integer Delay Example T1 opens.

2-55

2 Advanced Signal Concepts

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

• Signal = 1:100

• Sample time = 1

• Samples per frame = 1

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the DSP Constant block. The Block Parameters: DSP
Constant dialog box opens.

6 Set the Constant value parameter to 3, and then click OK.

The input to the Delay port of the Variable Integer Delay block specifies
the number of sample periods that should elapse before an input to the In
port is released to the output. This value represents the block’s algorithmic
delay. In this example, since the input to the Delay port is 3, and the
sample period at the In and Delay ports is 1, then the sample that arrives
at the block’s In port at time t=0 is released to the output at time t=3.

2-56

Delay and Latency

7 Double-click the Variable Integer Delay block. The Block Parameters:
Variable Integer Delay dialog box opens.

8 Set the Initial conditions parameter to -1, and then click OK.

9 From the Format menu, point to Port/Signal Displays, and select Signal
Dimensions and Wide Nonscalar Lines.

10 Run the model.

The model should look similar to the following figure.

11 At the MATLAB command prompt, type dsp_examples_yout

The output is shown below:

dsp_examples_yout =

0 -1
1 -1
2 -1
3 1

2-57

2 Advanced Signal Concepts

4 2
5 3

The first column is the Simulink time provided by the Digital Clock block.
The second column is the delayed input. As expected, the input to the block
at t=0 is delayed three samples and appears as the fourth output sample,
at t=3. You can also see that the first three outputs from the Variable
Integer Delay block inherit the value of the block’s Initial conditions
parameter, -1. This period of time, from the start of the simulation until
the first input is propagated to the output, is sometimes called the initial
delay of the block.

Many blocks in Signal Processing Blockset have some degree of fixed or
adjustable algorithmic delay. These include any blocks whose algorithms
rely on delay or storage elements, such as filters or buffers. Often, but not
always, such blocks provide an Initial conditions parameter that allows you
to specify the output values generated by the block during the initial delay. In
other cases, the initial conditions are internally set to 0.

Consult the block reference pages for the delay characteristics of specific
Signal Processing Blockset blocks.

Excess Algorithmic Delay (Tasking Latency)
Under certain conditions, Simulink may force a block to delay inputs longer
than is strictly required by the block’s algorithm. This excess algorithmic
delay is called tasking latency, because it arises from synchronization
requirements of the Simulink tasking mode. A block’s overall algorithmic
delay is the sum of its basic delay and tasking latency.

Algorithmic delay = Basic algorithmic delay + Tasking latency

The tasking latency for a particular block may be dependent on the following
block and model characteristics:

• “Simulink Tasking Mode” on page 2-59

• “Block Rate Type” on page 2-59

• “Model Rate Type” on page 2-60

2-58

Delay and Latency

• “Block Sample Mode” on page 2-60

Simulink Tasking Mode
Simulink has two tasking modes:

• Single-tasking

• Multitasking

To select a mode, from the Simulation menu, select Configuration
Parameters. In the Select pane, click Solver. From the Type list, select
Fixed-step. From the Tasking mode for periodic sample times list,
choose SingleTasking or MultiTasking. If, from the Tasking mode
for periodic sample times list you select Auto, the simulation runs in
single-tasking mode if the model is single-rate, or multitasking mode if the
model is multirate.

Note Many multirate blocks have reduced latency in the Simulink
single-tasking mode. Check the “Latency” section of a multirate block’s
reference page for details. Also see “Models with Multiple Sample Rates” in
the Real-Time Workshop User’s Guide documentation.

Block Rate Type
A block is called single-rate when all of its input and output ports operate at
the same frame rate. A block is called multirate when at least one input or
output port has a different frame rate than the others.

Many blocks are permanently single-rate. This means that all input and
output ports always have the same frame rate. For other blocks, the block
parameter settings determine whether the block is single-rate or multirate.
Only multirate blocks are subject to tasking latency.

2-59

2 Advanced Signal Concepts

Note Simulink may report an algebraic loop error if it detects a feedback loop
composed entirely of multirate blocks. To break such an algebraic loop, insert
a single-rate block with nonzero delay, such as a Unit Delay block. See the
Simulink documentation for more information about “Algebraic Loops”.

Model Rate Type
When all ports of all blocks in a model operate at a single frame rate, the
model is called single-rate. When the model contains blocks with differing
frame rates, or at least one multirate block, the model is called multirate.
Note that Simulink prevents a single-rate model from running in multitasking
mode by generating an error.

Block Sample Mode
Many blocks can operate in either sample-based or frame-based modes. In
source blocks, the mode is usually determined by the Samples per frame
parameter. If, for the Samples per frame parameter, you enter 1, the block
operates in sample-based mode. If you enter a value greater than 1, the block
operates in frame-based mode. In nonsource blocks, the sample mode is
determined by the input signal. See the block reference pages for additional
information about specific blocks.

Predicting Tasking Latency
The specific amount of tasking latency created by a particular combination
of block parameter and simulation settings is discussed in the “Latency”
section of a block’s reference page. In this topic, you use the Upsample block’s
reference page to predict the tasking latency of a model:

1 At the MATLAB command prompt, type doc_upsample_tut1.

The Upsample Example T1 model opens.

2-60

Delay and Latency

2 From the Simulation menu, select Configuration Parameters.

3 In the Solver pane, from the Type list, select Fixed-step. From the
Solver list, select discrete (no continuous states).

4 From the Tasking mode for periodic sample times list, select
MultiTasking, and then click OK.

Most multirate blocks experience tasking latency only in the Simulink
multitasking mode.

5 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

6 Set the block parameters as follows, and then click OK:

• Signal = 1:100

• Sample time = 1/4

• Samples per frame = 4

2-61

2 Advanced Signal Concepts

7 Double-click the Upsample block. The Block Parameters: Upsample
dialog box opens.

8 Set the block parameters as follows, and then click OK:

• Upsample factor = 4

• Sample offset = 0

• Initial condition = -1

• Frame-based mode = Maintain input frame size

The Frame-based mode parameter makes the model multirate, since the
input and output frame rates will not be equal.

9 Double-click the Digital Clock block. The Block Parameters: Digital
Clock dialog box opens.

10 Set the Sample time parameter to 0.25, and then click OK.

This matches the sample period of the Upsample block’s output.

11 Double-click the Frame Conversion block. The Block Parameters: Frame
Conversion dialog box opens.

12 Set the Output signal parameter of the to Sample based, and then click
OK.

13 Run the model.

The model should now look similar to the following figure.

2-62

Delay and Latency

The model prepends the current value of the Simulink timer, from the
Digital Clock block, to each output frame. The Frame Conversion block
converts the frame-based signal into a sample-based signal so that the
output in the MATLAB Command Window is easily readable.

In the example, the Signal From Workspace block generates a new frame
containing four samples once every second (Tfo = π*4). The first few output
frames are:

(t=0) [1 2 3 4]
(t=1) [5 6 7 8]
(t=2) [9 10 11 12]
(t=3) [13 14 15 16]
(t=4) [17 18 19 20]

The Upsample block upsamples the input by a factor of 4, inserting three
zeros between each input sample. The change in rates is confirmed by the
Probe blocks in the model, which show a decrease in the frame period from
Tfi = 1 to Tfo = 0.25.

14 At the MATLAB command prompt, type squeeze(dsp_examples_yout)'.

2-63

2 Advanced Signal Concepts

The output from the simulation is displayed in a matrix format. The first
few samples of the result, ans, are:

“Latency and Initial Conditions” in the Upsample block’s reference page
indicates that when Simulink is in multitasking mode, the first sample of
the block’s frame-based input appears in the output as sample MiL+D+1,
where Mi is the input frame size, L is the Upsample factor, and D is the
Sample offset. This formula predicts that the first input in this example
should appear as output sample 17 (that is, 4*4+0+1).

The first column of the output is the Simulink time provided by the Digital
Clock block. The four values to the right of each time are the values in
the output frame at that time. You can see that the first sample in each
of the first four output frames inherits the value of the Upsample block’s
Initial conditions parameter. As a result of the tasking latency, the first
input value appears as the first sample of the 5th output frame (at t=1).
This is sample 17.

Now try running the model in single-tasking mode.

15 From the Simulation menu, select Configuration Parameters.

16 In the Solver pane, from the Type list, select Fixed-step. From the
Solver list, select discrete (no continuous states).

17 From the Tasking mode for periodic sample times list, select
SingleTasking.

18 Run the model.

2-64

Delay and Latency

The model now runs in single-tasking mode.

19 At the MATLAB command prompt, type squeeze(dsp_examples_yout)'.

The first few samples of the result, ans, are:

“Latency and Initial Conditions” in the Upsample block’s reference page
indicates that the block has zero latency for all multirate operations in
the Simulink single-tasking mode.

The first column of the output is the Simulink time provided by the Digital
Clock block. The four values to the right of each time are the values in the
output frame at that time. The first input value appears as the first sample
of the first output frame (at t=0). This is the expected behavior for the
zero-latency condition. For the particular parameter settings used in this
example, running upsample_tut1 in single-tasking mode eliminates the
17-sample delay that is present when you run the model in multitasking
mode.

You have now successfully used the Upsample block’s reference page to
predict the tasking latency of a model.

2-65

2 Advanced Signal Concepts

2-66

3

Filters

The Signal Processing Blockset Filtering library provides an extensive array
of filtering blocks for designing and implementing filters in your models.

Digital Filter Block (p. 3-2) Implement your filter design using
the Digital Filter block

Digital Filter Design Block (p. 3-18) Create and implement filters using
the Digital Filter Design block

Filter Realization Wizard (p. 3-32) Create and implement filters using
the Filter Realization Wizard

Analog Filter Design Block (p. 3-51) Design analog IIR filters using the
Analog Filter Design block

Adaptive Filters (p. 3-53) Create and customize an adaptive
filter using an LMS Filter block

Multirate Filters (p. 3-66) Review filter bank concepts and
explore the multirate filtering demos
in Signal Processing Blockset

3 Filters

Digital Filter Block
You can use the Digital Filter block to implement digital FIR and IIR filters
in your models. Use this block if you have already performed the design and
analysis and know your desired filter coefficients. You can use this block to
filter single-channel and multichannel signals, and to simulate floating-point
and fixed-point filters. Then, you can use “Real-Time Workshop” to generate
highly optimized C code from your filter block.

To implement a filter with the Digital Filter block, you must provide the
following basic information about the filter:

• Whether the filter transfer function is FIR with all zeros, IIR with all poles,
or IIR with poles and zeros

• The desired filter structure

• The filter coefficients

Note Use the Digital Filter Design block to design and implement a filter.
Use the Digital Filter block to implement a predesigned filter. Both blocks
implement a filter in the same manner and have the same behavior during
simulation and code generation.

This section includes the following topics:

Implementing a Lowpass Filter
(p. 3-3)

Create a lowpass filter using the
Digital Filter block

Implementing a Highpass Filter
(p. 3-4)

Create a highpass filter using the
Digital Filter block

Filtering High-Frequency Noise
(p. 3-5)

Build a system capable of filtering
high-frequency noise using a
highpass and lowpass filter

Specifying Static Filters (p. 3-10) Use the Digital Filter block to create
a static filter

3-2

Digital Filter Block

Specifying Time-Varying Filters
(p. 3-11)

Use the Digital Filter block to create
a time-varying filter

Specifying the SOS Matrix
(Biquadratic Filter Coefficients)
(p. 3-16)

Use the Digital Filter block to create
a static biquadratic direct form II
transposed filter

Implementing a Lowpass Filter
You can use the Digital Filter block to implement a digital FIR or IIR filter. In
this topic, you use it to implement an FIR lowpass filter:

1 Define the lowpass filter coefficients in the MATLAB workspace by typing

lopassNum = [-0.0021 -0.0108 -0.0274 -0.0409 -0.0266 0.0374
0.1435 0.2465 0.2896 0.2465 0.1435 0.0374 -0.0266 -0.0409
-0.0274 -0.0108 -0.0021];

2 Open Simulink and create a new model file.

3 From the Signal Processing Blockset Filtering library, and then from the
Filter Designs library, click-and-drag a Digital Filter block into your model.

4 Double-click the Digital Filter block. Set the block parameters as follows,
and then click OK:

• Transfer function type = FIR (all zeros)

• Filter structure = Direct form transposed

• Coefficient source = Specify via dialog

• Numerator coefficients = lopassNum

• Initial conditions = 0

Note that you can provide the filter coefficients in several ways:

• Type in a variable name from the MATLAB workspace, such as
lopassNum.

• Type in filter design commands from Signal Processing Toolbox or Filter
Design Toolbox, such as fir1(5, 0.2, 'low').

• Type in a vector of the filter coefficient values.

3-3

3 Filters

5 Rename your block Digital Filter - Lowpass.

The Digital Filter block in your model now represents a lowpass filter. In the
next topic, “Implementing a Highpass Filter” on page 3-4, you use a Digital
Filter block to implement a highpass filter. For more information about the
Digital Filter block, see the Digital Filter block reference page. For more
information about designing and implementing a new filter, see “Digital Filter
Design Block” on page 3-18.

Implementing a Highpass Filter
In this topic, you implement an FIR highpass filter using the Digital Filter
block:

1 If the model you created in “Implementing a Lowpass Filter” on page 3-3 is
not open on your desktop, you can open an equivalent model by typing

doc_probe_tut1

at the MATLAB command prompt.

2 Define the highpass filter coefficients in the MATLAB workspace by typing

hipassNum = [-0.0051 0.0181 -0.0069 -0.0283 -0.0061 ...
0.0549 0.0579 -0.0826 -0.2992 0.5946 -0.2992 -0.0826 ...
0.0579 0.0549 -0.0061 -0.0283 -0.0069 0.0181 -0.0051];

3 From the Signal Processing Blockset Filtering library, and then from the
Filter Designs library, click-and-drag a Digital Filter block into your model.

4 Double-click the Digital Filter block. Set the block parameters as follows,
and then click OK:

• Transfer function type = FIR (all zeros)

• Filter structure = Direct form transposed

• Coefficient source = Specify via dialog

• Numerator coefficients = hipassNum

• Initial conditions = 0

You can provide the filter coefficients in several ways:

3-4

Digital Filter Block

• Type in a variable name from the MATLAB workspace, such as
hipassNum.

• Type in filter design commands from Signal Processing Toolbox or Filter
Design Toolbox, such as fir1(5, 0.2, 'low').

• Type in a vector of the filter coefficient values.

5 Rename your block Digital Filter - Highpass.

You have now successfully implemented a highpass filter. In the next topic,
“Filtering High-Frequency Noise” on page 3-5, you use these Digital Filter
blocks to create a model capable of removing high frequency noise from a
signal. For more information about designing and implementing a new filter,
see “Digital Filter Design Block” on page 3-18.

Filtering High-Frequency Noise
In the previous topics, you used Digital Filter blocks to implement FIR
lowpass and highpass filters. In this topic, you use these blocks to build a
model that removes high frequency noise from a signal. In this model, you use
the highpass filter, which is excited using a uniform random signal, to create
high-frequency noise. After you add this noise to a sine wave, you use the
lowpass filter to filter out the high-frequency noise:

1 If the model you created in “Implementing a Highpass Filter” on page 3-4 is
not open on your desktop, you can open an equivalent model by typing

doc_filter_ex2

at the MATLAB command prompt.

2 If you have not already done so, define the lowpass and highpass filter
coefficients in the MATLAB workspace by typing

lopassNum = [-0.0021 -0.0108 -0.0274 -0.0409 -0.0266 ...
0.0374 0.1435 0.2465 0.2896 0.2465 0.1435 0.0374 ...
-0.0266 -0.0409 -0.0274 -0.0108 -0.0021];
hipassNum = [-0.0051 0.0181 -0.0069 -0.0283 -0.0061 ...
0.0549 0.0579 -0.0826 -0.2992 0.5946 -0.2992 -0.0826 ...
0.0579 0.0549 -0.0061 -0.0283 -0.0069 0.0181 -0.0051];

3-5

3 Filters

3 Click-and-drag the following blocks into your model file.

Block Library Quantity

Matrix Concatenation Math Functions / Matrices
and Linear Algebra / Matrix
Operations

1

Random Source Signal Processing Sources 1

Sine Wave Signal Processing Sources 1

Sum Simulink / Math Operations
library

1

Vector Scope Signal Processing Sinks 1

4 Set the parameters for the rest of the blocks as indicated in the following
table. For any parameters not listed in the table, leave them at their
default settings.

Block Parameter Setting

Matrix
Concatenation

• Number of inputs = 3

• Concatenation method = Horizontal

Random Source • Source type = Uniform

• Minimum = 0

• Maximum = 4

• Sample mode = Discrete

• Sample time = 1/1000

• Samples per frame = 50

Sine Wave • Frequency (Hz) = 75

• Sample time = 1/1000

• Samples per frame = 50

3-6

Digital Filter Block

Block Parameter Setting

Sum • Icon shape = Time

• List of signs = ++

Vector Scope Scope Properties:

• Input domain = Time

• Time display span (number of frames) = 1

5 Connect the blocks and label your signals as shown in the following figure.
You need to resize some of your blocks to accomplish this task.

3-7

3 Filters

6 From the Simulation menu, select Configuration Parameters.

The Configuration Parameters dialog box opens.

7 In the Solver pane, set the parameters as follows, and then click OK:

• Start time = 0

• Stop time = 5

• Type = Fixed-step

• Solver = discrete (no continuous states)

8 In the model window, from the Simulation menu, choose Start.

The model simulation begins and the Scope displays the three input signals.

9 Double-click the Vector Scope block and click the Display Properties tab.
Select the Channel legend check box and click OK. Next time you run the
simulation, a legend appears in the Vector Scope window.

You can also set the color, style, and marker of each channel.

10 In the Vector Scope window, from the Channels menu, point to Ch 1 and
set the Style to -, Marker to None, and Color to Black.

Point to Ch 2 and set the Style to -, Marker to Diamond, and Color
to Red.

3-8

Digital Filter Block

Point to Ch 3 and set the Style to None, Marker to *, and Color to Blue.

3-9

3 Filters

11 Rerun the simulation and compare the original sine wave, noisy sine wave,
and filtered noisy sine wave in the Vector Scope display.

You can see that the lowpass filter filters out the high-frequency noise in
the noisy sine wave.

You have now used Digital Filter blocks to build a model that removes high
frequency noise from a signal. For more information about designing and
implementing a new filter, see “Digital Filter Design Block” on page 3-18.

Specifying Static Filters
You can use the Digital Filter block to specify a static filter by setting the
Coefficient source parameter to Specify via dialog. Depending on the
filter structure, you need to enter your filter coefficients into one or more of

3-10

Digital Filter Block

the following parameters. The block disables all the irrelevant parameters.
To see which of these parameters correspond to each filter structure, see
“Supported Filter Structures” in Signal Processing Blockset Reference:

• Numerator coefficients — Column or row vector of numerator
coefficients, [b0, b1, b2, ..., bn].

• Denominator coefficients — Column or row vector of denominator
coefficients, [a0, a1, a2, ..., am].

• Reflection coefficients — Column or row vector of reflection coefficients,
[k1, k2, ..., kn].

• SOS matrix (Mx6) — M-by-6 SOS matrix. To learn about SOS matrices,
see “Specifying the SOS Matrix (Biquadratic Filter Coefficients)” on page
3-16.

• Scale values — Scalar or vector of M+1 scale values to be used between
SOS stages.

Tuning the Filter Coefficient Values During Simulation
To change the static filter coefficients during simulation, double-click the
block, type in the new vector(s) of filter coefficients, and click OK. You cannot
change the filter order, so you cannot change the number of elements in the
vector(s) of filter coefficients.

Specifying Time-Varying Filters

Note This block does not support time-varying Biquadratic (SOS) filters.

Time-varying filters are filters whose coefficients change with time. You can
specify a time-varying filter that changes once per frame or once per sample
and you can filter multiple channels with each filter. However, you cannot
apply different filters to each channel; all channels must be filtered with the
same filter.

To specify a time-varying filter:

3-11

3 Filters

1 Set the Coefficient source parameter to Input port(s), which enables
extra block input ports for the time-varying filter coefficients. The following
diagram shows one block with an extra port for reflection coefficients, and
another with extra ports for numerator and denominator coefficients.

2 Set the Coefficient update rate parameter to One filter per frame
or One filter per sample depending on how often you want to update
the filter coefficients. To learn more, see “Setting the Coefficient Update
Rate” on page 3-12.

3 Provide vectors of numerator, denominator, or reflection coefficients to the
block input ports for filter coefficients. The series of vectors must arrive at
their ports at a specific rate, and must be of certain lengths. To learn more,
see “Providing Filter Coefficient Vectors at Block Input Ports” on page 3-13.

4 Select or clear the First denominator coefficient = 1, remove a0 term
in the structure parameter depending on whether your first denominator
coefficient is always 1. To learn more, see “Removing the a0 Term in the
Filter Structure” on page 3-15.

Setting the Coefficient Update Rate
When the input is frame based, the block updates time-varying filters once
every input frame, or once for every sample in an input frame, depending on
the Coefficient update rate parameter:

• One filter per frame — Each coefficient vector represents one filter that
is applied to all samples in the current frame.

• One filter per sample — Each coefficient vector represents a
concatenation of filter coefficients. When you have N samples per frame
and M coefficients for each filter, then the coefficient vector length is M*N.
All the coefficient vectors must be of equal length.

3-12

Digital Filter Block

The following figure shows the block filtering one channel; however, the block
can filter multiple channels. Note that the block can apply a single filter to
multiple channels, but cannot apply a different filter to each channel.

Providing Filter Coefficient Vectors at Block Input Ports
As illustrated in the previous figure, the filter coefficient vectors for filters
that update once per frame are different from coefficient vectors for filters
that update once per sample. See the following tables to meet the rate and
length requirements of the filter coefficient vectors:

3-13

3 Filters

• Length requirements — See the table Length Requirements for
Time-Varying Filter Coefficient Vectors on page 3-14.

• Rate requirements — See the table Rate Requirements for Time-Varying
Filter Coefficient Vectors on page 3-15.

The output size, frame status, and dimension always match those of the input
signal that is filtered, not the vector of filter coefficients.

Length Requirements for Time-Varying Filter Coefficient Vectors

Coefficient
Update
Rate

How to Specify Filter Coefficient Vectors
(Also see the previous figure)

Length
Requirements

Once per
frame

Each coefficient vector corresponds to one input frame and
represents one filter. Specify each vector as you would
any static filter: [b0, b1, b2, ..., bn], [a0, a1, a2, ..., am], or
[k1, k2, ..., kn]

None

Once per
sample

Each coefficient vector corresponds to one input frame.
However, the vector represents multiple filters of the same
length with one filter for each sample in the current frame.
To create such a vector, concatenate all the filters for each
sample within the input frame. For instance, the following
vector specifies length-2 numerator coefficients for each
sample in a three-sample frame

b b B B0 1 0 1 0 1 β β[]

where b b0 1 [] filters the first sample in the input

frame, B B0 1 [] filters the second sample, and so on.

All filters must be
the same length,
L.

The length of each
filter coefficient
vector must be L
times the number
of samples per
frame in the input.
(Each sample in
the frame has
one set of filter
coefficients.)

The time-varying filter coefficient vectors can be sample- or frame-based row
or column vectors. The vectors of filter coefficients must arrive at their input
port at the same times that the frames of input data arrive at their input port,
as indicated in the following table.

3-14

Digital Filter Block

Rate Requirements for Time-Varying Filter Coefficient Vectors

Input
Signal

Time-Varying Filter
Coefficient Vectors

Rate Requirements (Also see the previous
figure)

Sample
based

Sample based Sample rates of input and filter coefficients
must be equal.

Sample
based

Frame based Input sample rate must equal filter coefficient
frame rate.

Frame
based

Sample based Input frame rate must equal filter coefficient
sample rate.

Frame
based

Frame based Frame rates of input and filter coefficients must
be equal.

Removing the a0 Term in the Filter Structure
When you know that the first denominator filter coefficient (a0) is always 1
for your time-varying filter, select the First denominator coefficient = 1,
remove a0 term in the structure parameter. Selecting this parameter
reduces the number of computations the block must make to produce the
output (the block omits the 1 / a0 term in the filter structure, as illustrated
in the following figure). The block output is invalid if you select this
parameter when the first denominator filter coefficient is not always 1 for
your time-varying filter. Note that the block ignores the First denominator
coefficient = 1, remove a0 term in the structure parameter for
fixed-point inputs, since this block does not support nonunity a0 coefficients
for fixed-point inputs.

3-15

3 Filters

Specifying the SOS Matrix (Biquadratic Filter
Coefficients)
The Digital Filter block does not support time-varying biquadratic filters. To
specify a static biquadratic filter (also known as a second-order section or SOS
filter), you need to set the following parameters as indicated:

• Transfer function type — IIR (poles & zeros)

• Filter structure — Biquad direct form I (SOS), or Biquad direct
form I transposed (SOS), or , or Biquad direct form II transposed
(SOS)

• SOS matrix (Mx6) M-by-6 SOS matrix

The SOS matrix is an M-by-6 matrix, where M is the number of sections in
the second-order section filter. Each row of the SOS matrix contains the
numerator and denominator coefficients (bik and aik) of the corresponding
section in the filter.

• Scale values Scalar or vector of M+1 scale values to be used between
SOS stages

3-16

Digital Filter Block

If you enter a scalar, the value is used as the gain value before the first
section of the second-order filter. The rest of the gain values are set to 1.

If you enter a vector of M+1 values, each value is used for a separate section
of the filter. For example, the first element is the first gain value, the
second element is the second gain value, and so on.

You can use the ss2sos and tf2sos functions from Signal Processing Toolbox
to convert a state-space or transfer-function description of your filter into the
second-order section description used by this block.

b b b a a a
b b b a a a

b b b a a aM M M M M

11 21 31 11 21 31

12 22 32 12 22 32

1 2 3 1 2

M M M M M M

33M

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Note The block normalizes each row by a1i to ensure a value of 1 for the
zero-delay denominator coefficients.

3-17

3 Filters

Digital Filter Design Block
You can use the Digital Filter Design block to design and implement a digital
filter. The filter you design can filter single-channel or multichannel signals.
The Digital Filter Design block is ideal for simulating the numerical behavior
of your filter on a floating-point system, such as a personal computer or DSP
chip. You can use “Real-Time Workshop” to generate C code from your filter
block. For more information on generating C code from models, see “Code
Generation” in the Getting Started Signal Processing Blockset documentation.

This section includes the following topics:

Overview of the Digital Filter Design
Block (p. 3-19)

Learn the basic functionality of the
Digital Filter Design block

Choosing Between Filter Design
Blocks (p. 3-20)

Determine whether the Digital
Filter Design block or the Filter
Realization Wizard is right for your
application

Creating a Lowpass Filter (p. 3-22) Use the Digital Filter Design block
to design and implement a lowpass
filter

Creating a Highpass Filter (p. 3-24) Use the Digital Filter Design block
to design and implement a highpass
filter

Filtering High-Frequency Noise
(p. 3-26)

Create a system capable of filtering
high-frequency noise using a
highpass and a lowpass filter

Alternatively, you can use other MathWorks products, such as Signal
Processing Toolbox and Filter Design Toolbox, to design your filters. Once you
design a filter using either toolbox, you can use one of the Signal Processing
Blockset’s filter implementation blocks, such as the Digital Filter block, to
realize the filters in your models. For more information, see the Signal
Processing Toolbox documentation and Filter Design Toolbox documentation.
To learn how to import and export your filter designs, see “Importing and
Exporting Quantized Filters” in the Filter Design Toolbox documentation.

3-18

Digital Filter Design Block

Overview of the Digital Filter Design Block

Filter Design and Analysis
You perform all filter design and analysis within the Filter Design and
Analysis Tool (FDATool) GUI, which opens when you double-click the Digital
Filter Design block. FDATool provides extensive filter design parameters and
analysis tools such as pole-zero and impulse response plots.

Filter Implementation
Once you have designed your filter using FDATool, the block automatically
realizes the filter using the filter structure you specified. You can then use
the block to filter signals in your model. You can also fine-tune the filter by
changing the filter specification parameters during a simulation. The outputs
of the Digital Filter Design block numerically match the outputs of the filter
function in Filter Design Toolbox and the filter function in MATLAB.

Saving, Exporting, and Importing Filters
The Digital Filter Design block allows you to save the filters you design,
export filters (to the MATLAB workspace, MAT-files, etc.), and import filters
designed elsewhere.

To learn how to save your filter designs, see “Saving and Opening Filter
Design Sessions” in the Signal Processing Toolbox documentation. To learn
how to import and export your filter designs, see “Importing and Exporting
Quantized Filters” in the Filter Design Toolbox documentation.

Note Use the Digital Filter Design block to design and implement a filter.
Use the Digital Filter block to implement a predesigned filter. Both blocks
implement a filter design in the same manner and have the same behavior
during simulation and code generation.

See the Digital Filter Design block reference page for more information. For
information on choosing between the Digital Filter Design block and the
Filter Realization Wizard, see “Choosing Between Filter Design Blocks” on
page 3-20.

3-19

3 Filters

Choosing Between Filter Design Blocks
You can design and implement digital filters using the Digital Filter Design
block and Filter Realization Wizard. This topic explains the similarities and
differences between these blocks. In addition, you learn how to choose the
block that is best suited for your needs.

Similarities
The Digital Filter Design block and Filter Realization Wizard are similar
in the following ways:

• Filter design and analysis options — Both blocks use the Filter Design and
Analysis Tool (FDATool) GUI for filter design and analysis.

• Output values — If the output of both blocks is double-precision floating
point, single-precision floating point, or fixed point, the output values of
both blocks numerically match the output of the filter method of the
dfilt object.

Differences
The Digital Filter Design block and Filter Realization Wizard handle the
following things differently:

• Filter implementation method

- The Digital Filter Design block opens the FDATool GUI to the Design
Filter panel. It implements filters using the Digital Filter block. These
filters are optimized for both speed and memory use in simulation and
in C code generation. For more information on code generation, see
“Code Generation” in the Getting Started Signal Processing Blockset
documentation.

- The Filter Realization Wizard opens the FDATool GUI to the Realize
Model panel. The block can implement filters in two different ways. It
can use Sum, Gain, and Delay blocks from Simulink, or it can use the
Digital Filter block. If you choose to implement your filter using the
Digital Filter block, your filter is bound by the type of filters this block
supports.

3-20

Digital Filter Design Block

Note If your filter is implemented by the Filter Realization Wizard using
Sum, Gain, and Delay blocks, inputs to the filter must be sample based.

• Supported filter structures — Both blocks support many of the same
basic filter structures, but the Filter Realization Wizard supports more
structures than the Digital Filter Design block. This is because the block
can implement filters using Sum, Gain, and Delay blocks. See the Filter
Realization Wizard and Digital Filter Design block reference pages for a
list of all the structures they support.

• Multichannel filtering — The Digital Filter Design block can filter
multichannel signals. Filters implemented by the Filter Realization Wizard
can only filter single-channel signals.

• Data type support — The Digital Filter block supports single- and
double-precision floating-point computation for all filter structures and
fixed-point computation for some filter structures. The Digital Filter Design
block only supports single- and double-precision floating-point computation.

When to Use Each Block
The following are specific situations where only the Digital Filter Design
block or the Filter Realization Wizard is appropriate.

• Digital Filter Design

- Use to simulate single- and double-precision floating-point filters.

- Use to filter multichannel signals.

- Use to generate highly optimized ANSI/ISO C code that implements
floating-point filters for embedded systems. For more information on
code generation, see “Code Generation” in the Getting Started Signal
Processing Blockset documentation.

• Filter Realization Wizard

- Use to simulate numerical behavior of fixed-point filters in a DSP chip,
a field-programmable gate array (FPGA), or an application-specific
integrated circuit (ASIC).

3-21

3 Filters

- Use to simulate single- and double-precision floating-point filters with
structures that the Digital Filter Design block does not support.

- Use to visualize the filter structure, as the block can build the filter
from Sum, Gain, and Delay blocks.

- Use to generate multiple filter blocks rapidly.

See “Filter Realization Wizard” on page 3-32 and the Filter Realization
Wizard block reference page for information.

Creating a Lowpass Filter
You can use the Digital Filter Design block to design and implement a digital
FIR or IIR filter. In this topic, you use it to create an FIR lowpass filter:

1 Open Simulink and create a new model file.

2 From the Signal Processing Blockset Filtering library, and then from the
Filter Designs library, click-and-drag a Digital Filter Design block into
your model.

3 Double-click the Digital Filter Design block.

The Filter Design and Analysis Tool (FDATool) GUI opens.

4 Set the parameters as follows, and then click OK:

• Response Type = Lowpass

• Design Method = FIR, Equiripple

• Filter Order = Minimum order

• Units = Normalized (0 to 1)

• wpass = 0.2

• wstop = 0.5

3-22

Digital Filter Design Block

When you are finished, the GUI should look similar to the following figure:

5 Click Design Filter at the bottom of the GUI to design the filter.

Your Digital Filter Design block now represents a filter with the parameters
you specified.

3-23

3 Filters

6 From the Edit menu, select Convert Structure.

The Convert Structure dialog box opens.

7 Select Direct-Form FIR Transposed and click OK.

8 Rename your block Digital Filter Design - Lowpass.

The Digital Filter Design block now represents a lowpass filter with a
Direct-Form FIR Transposed structure. The filter passes all frequencies up
to 20% of the Nyquist frequency (half the sampling frequency), and stops
frequencies greater than or equal to 50% of the Nyquist frequency as defined
by the wpass and wstop parameters. In the next topic, “Creating a Highpass
Filter” on page 3-24, you use a Digital Filter Design block to create a highpass
filter. For more information about implementing a predesigned filter, see
“Digital Filter Block” on page 3-2.

Creating a Highpass Filter
In this topic, you create a highpass filter using the Digital Filter Design block:

1 If the model you created in “Creating a Lowpass Filter” on page 3-22 is not
open on your desktop, you can open an equivalent model by typing

doc_filter_ex4

at the MATLAB command prompt.

2 From the Signal Processing Blockset Filtering library, and then from the
Filter Designs library, click-and-drag a second Digital Filter Design block
into your model.

3 Double-click the Digital Filter Design block.

The Filter Design and Analysis Tool (FDATool) GUI opens.

4 Set the parameters as follows:

• Response Type = Highpass

• Design Method = FIR, Equiripple

• Filter Order = Minimum order

3-24

Digital Filter Design Block

• Units = Normalized (0 to 1)

• wstop = 0.2

• wpass = 0.5

When you are finished, the GUI should look similar to the following figure.

3-25

3 Filters

5 Click the Design Filter button at the bottom of the GUI to design the filter.

Your Digital Filter Design block now represents a filter with the parameters
you specified.

6 In the Edit menu, select Convert Structure.

The Convert Structure dialog box opens.

7 Select Direct-Form FIR Transposed and click OK.

8 Rename your block Digital Filter Design - Highpass.

The block now implements a highpass filter with a direct form FIR transpose
structure. The filter passes all frequencies greater than or equal to 50% of the
Nyquist frequency (half the sampling frequency), and stops frequencies less
than or equal to 20% of the Nyquist frequency as defined by the wpass and
wstop parameters. This highpass filter is the opposite of the lowpass filter
described in “Creating a Lowpass Filter” on page 3-22. The highpass filter
passes the frequencies stopped by the lowpass filter, and stops the frequencies
passed by the lowpass filter. In the next topic, “Filtering High-Frequency
Noise” on page 3-26, you use these Digital Filter Design blocks to create a
model capable of removing high frequency noise from a signal. For more
information about implementing a predesigned filter, see “Digital Filter
Block” on page 3-2.

Filtering High-Frequency Noise
In the previous topics, you used Digital Filter Design blocks to create FIR
lowpass and highpass filters. In this topic, you use these blocks to build a
model that removes high frequency noise from a signal. In this model, you use
the highpass filter, which is excited using a uniform random signal, to create
high-frequency noise. After you add this noise to a sine wave, you use the
lowpass filter to filter out the high-frequency noise:

1 If the model you created in “Creating a Highpass Filter” on page 3-24 is not
open on your desktop, you can open an equivalent model by typing

doc_filter_ex5

at the MATLAB command prompt.

3-26

Digital Filter Design Block

2 Click-and-drag the following blocks into your model file.

Block Library Quantity

Matrix Concatenation Math Functions / Matrices
and Linear Algebra / Matrix
Operations

1

Random Source Signal Processing Sources 1

Sine Wave Signal Processing Sources 1

Sum Simulink Math Operations
library

1

Vector Scope Signal Processing Sinks 1

3 Set the parameters for these blocks as indicated in the following table.
Leave the parameters not listed in the table at their default settings.

Parameter Settings for the Other Blocks

Block Parameter Setting

Matrix
Concatenation

• Number of inputs = 3

• Concatenation method = Horizontal

Random
Source

• Source type = = Uniform

• Minimum = 0

• Maximum = 4

• Sample mode = Discrete

• Sample time = 1/1000

• Samples per frame = 50

Sine Wave • Frequency (Hz) = 75

• Sample time = 1/1000

• Samples per frame = 50

3-27

3 Filters

Parameter Settings for the Other Blocks (Continued)

Block Parameter Setting

Sum • Icon shape = rectangular

• List of signs = ++

• Input domain = Time

• Time display span (number of frames) = 1

Vector Scope Scope Properties:

• Input domain = Time

• Time display span (number of frames) = 1

4 Connect the blocks and label the signals as shown in the following figure.
You might need to resize some of the blocks to accomplish this task.

3-28

Digital Filter Design Block

5 From the Simulation menu, select Configuration Parameters.

The Configuration Parameters dialog box opens.

6 In the Solver pane, set the parameters as follows, and then click OK:

• Start time = 0

• Stop time = 5

• Type = Fixed-step

• Solver = discrete (no continuous states)

7 In the model window, from the Simulation menu, choose Start.

The model simulation begins and the Scope displays the three input signals.

8 Double-click the Vector Scope block and click the Display Properties
check box. Select the Channel legend check box and click OK. Next time
you run the simulation, a legend appears in the Vector Scope window.

You can also set the color, style, and marker of each channel.

9 In the Vector Scope window, from the Channels menu, point to Ch 1 and
set the Style to -, Marker to None, and Color to Black.

Point to Ch 2 and set the Style to -, Marker to Diamond, and Color
to Red.

3-29

3 Filters

Point to Ch 3 and set the Style to None, Marker to *, and Color to Blue.

3-30

Digital Filter Design Block

10 Rerun the simulation and compare the original sine wave, noisy sine wave,
and filtered noisy sine wave in the Vector Scope display.

You can see that the lowpass filter filters out the high-frequency noise in
the noisy sine wave.

You have now used Digital Filter Design blocks to build a model that removes
high frequency noise from a signal. For more information about these blocks,
see the Digital Filter Design block reference page. For information on another
block capable of designing and implementing filters, see “Filter Realization
Wizard” on page 3-32. To learn how to save your filter designs, see “Saving
and Opening Filter Design Sessions” in the Signal Processing Toolbox
documentation. To learn how to import and export your filter designs, see
“Importing and Exporting Quantized Filters” in the Filter Design Toolbox
documentation.

3-31

3 Filters

Filter Realization Wizard
The Filter Realization Wizard is another Signal Processing Blockset block
that can be used to design and implement digital filters. You can use this
tool to filter single-channel floating-point or fixed-point signals. Like the
Digital Filter Design block, double-clicking a Filter Realization Wizard block
opens FDATool. Unlike the Digital Filter Design block, the Filter Realization
Wizard starts FDATool with the Realize Model panel selected. This panel is
optimized for use with Signal Processing Blockset.

For more information, see the Filter Realization Wizard block reference page.
For information on choosing between the Digital Filter Design block and the
Filter Realization Wizard, see “Choosing Between Filter Design Blocks” on
page 3-20.

This section includes the following topics:

Designing and Implementing a
Fixed-Point Filter (p. 3-33)

Create a fixed-point filter with the
Filter Realization Wizard

Setting the Filter Structure and
Number of Filter Sections (p. 3-48)

Learn how to change the filter
structure and the number of
second-order sections in the filter

Optimizing the Filter Structure
(p. 3-49)

Optimize your filter structure for
zero, unity, and negative gains

Alternatively, you can use other MathWorks products, such as Signal
Processing Toolbox and Filter Design Toolbox, to design your filters. Once you
design a filter using either toolbox, you can use one of the Signal Processing
Blockset’s filter implementation blocks, such as the Digital Filter block, to
realize the filters in your models. For more information, see the Signal
Processing Toolbox documentation and Filter Design Toolbox documentation.
To learn how to import and export your filter designs, see “Importing and
Exporting Quantized Filters” in the Filter Design Toolbox documentation.

3-32

Filter Realization Wizard

Designing and Implementing a Fixed-Point Filter
In this section, a tutorial guides you through creating a fixed-point filter with
the Filter Realization Wizard. You will use the Filter Realization Wizard to
remove noise from a signal. This tutorial has the following parts:

• “Part 1 — Creating a Signal with Added Noise” on page 3-33

• “Part 2 — Creating a Fixed-Point Filter with the Filter Realization Wizard”
on page 3-35

• “Part 3 — Building a Model to Filter a Signal” on page 3-43

• “Part 4 — Looking at Filtering Results” on page 3-46

Part 1 — Creating a Signal with Added Noise
In this section of the tutorial, you will create a signal with added noise. Later
in the tutorial, you will filter this signal with a fixed-point filter that you
design with the Filter Realization Wizard.

1 Type

load mtlb
soundsc(mtlb,Fs)

at the MATLAB command line. You should hear a voice say “MATLAB.”
This is the signal to which you will add noise.

2 Create a noise signal by typing

noise = cos(2*pi*3*Fs/8*(0:length(mtlb)-1)/Fs)';

at the command line. You can hear the noise signal by typing

soundsc(noise,Fs)

3 Add the noise to the original signal by typing

u = mtlb + noise;

at the command line.

4 Scale the signal with noise by typing

3-33

3 Filters

u = u/max(abs(u));

at the command line. You scale the signal to try to avoid overflows later on.
You can hear the scaled signal with noise by typing

soundsc(u,Fs)

5 View the scaled signal with noise by typing

spectrogram(u,256,Fs);colorbar

at the command line.

The spectrogram appears as follows.

3-34

Filter Realization Wizard

In the spectrogram, you can see the noise signal as a horizontal line at about
2800 Hz, which is equal to 3*Fs/8.

Part 2 — Creating a Fixed-Point Filter with the Filter Realization
Wizard
Next you will create a fixed-point filter using the Filter Realization Wizard.
You will create a filter that reduces the effects of the noise on the signal.

6 Open a new Simulink model, and drag-and-drop a Filter Realization
Wizard block from the Filtering / Filter Designs library into the model.

Note You do not have to place a Filter Realization Wizard block in a model
in order to use it. You can open the GUI from within a library. However,
for purposes of this tutorial, we will keep the Filter Realization Wizard
block in the model.

3-35

3 Filters

7 Double-click the Filter Realization Wizard block in your model. The
Realize Model panel of the Filter Design and Analysis Tool (FDATool)
appears.

3-36

Filter Realization Wizard

8 Click the Design Filter button on the bottom left of FDATool. This brings
forward the Design Filter panel of the tool.

9 Set the following fields in the Design Filter panel:

• Set Design Method to IIR -- Constrained Least Pth-norm

• Set Fs to Fs

3-37

3 Filters

• Set Fpass to 0.2*Fs

• Set Fstop to 0.25*Fs

• Set Max pole radius to 0.8

• Click the Design Filter button

The Design Filter panel should now appear as follows.

3-38

Filter Realization Wizard

10 Click the Set Quantization Parameters button on the bottom left of
FDATool. This brings forward the Set Quantization Parameters panel
of the tool.

11 Set the following fields in the Set Quantization Parameters panel:

• Select Fixed-point for the Filter arithmetic parameter.

3-39

3 Filters

• Make sure the Best precision fraction lengths check box is selected
on the Coefficients pane.

The Set Quantization Parameters panel should appear as follows.

3-40

Filter Realization Wizard

12 Click the Realize Model button on the left side of FDATool. This brings
forward the Realize Model panel of the tool.

3-41

3 Filters

13 Click the Realize Model button on the bottom of FDATool. A block for the
new filter appears in your model.

Note You do not have to keep the Filter Realization Wizard block in the
same model as your Filter block. However, for this tutorial, we will keep
the blocks in the same model.

14 Double-click the Filter block in your model. This will bring up the
realization of the filter being represented by the block.

3-42

Filter Realization Wizard

Part 3 — Building a Model to Filter a Signal
In this section of the tutorial, you will build and run a model with the filter
you just designed, in order to filter the noise from your signal.

15 Connect a Signal From Workspace block from the Signal Processing
Sources library to the input port of your filter block.

16 Connect a Signal To Workspace block from the Signal Processing Sinks
library to the output port of your filter block. Your model should now
appear as follows.

3-43

3 Filters

17 Change the Signal parameter of the Signal From Workspace block to u by
double-clicking on the block.

18 Click the OK button.

3-44

Filter Realization Wizard

19 Open the Configuration Parameters dialog box from the Simulation
menu of the model. In the Solver pane of the dialog, set the following fields:

• Stop time = length(u)-1

• Type = Fixed-step

The Configuration Parameters dialog box should now appear as follows.

20 Click the OK button.

3-45

3 Filters

21 Run the model.

22 Select Port/Signal Displays > Port Data Types from the Format menu.
You can you see that a signal of type double is entering your Filter block,
and a signal of type sfix16_En11 is exiting your Filter block.

Part 4 — Looking at Filtering Results
Now you can listen to and look at the results of the fixed-point filter you
designed and implemented.

23 Type

soundsc(yout,Fs)

at the command line to hear the output of the filter. You should hear a voice
say “MATLAB.” The noise portion of the signal should be close to inaudible.

3-46

Filter Realization Wizard

24 Type

figure
spectrogram(yout, 256, Fs);colorbar

at the command line. You can compare the input and output signals
side-by-side.

From the colorbars at the side of each spectrogram, you can see that the noise
has been reduced by about 40 dB.

3-47

3 Filters

Setting the Filter Structure and Number of Filter
Sections
The Current Filter Information region of FDATool shows the structure and
the number of second-order sections in your filter.

Change the filter structure and number of filter sections of your filter as
follows:

• Select Convert Structure from the Edit menu to open the Convert
Structure dialog box. For details, see “Converting to a New Structure” in
the Signal Processing Toolbox documentation.

• Select Convert to Second-order Sections from the Edit menu to
open the Convert to SOS dialog box. For details, see “Converting to
Second-Order Sections” in the Signal Processing Toolbox documentation.

3-48

Filter Realization Wizard

Note You might not be able to directly access some of the supported
structures through the Convert Structure dialog of FDATool. However,
you can access all of the structures by creating a dfilt filter object with the
desired structure, and then importing the filter into FDATool. To learn more
about the Import Filter panel, see “Importing a Filter Design” in the Signal
Processing Toolbox documentation.

Optimizing the Filter Structure
The Filter Realization Wizard can implement a digital filter using a Digital
Filter block or by creating a subsystem block that implements the filter using
Sum, Gain, and Delay blocks. The following procedure shows you how to
optimize the filter implementation:

1 Open the Realize Model pane of FDATool by clicking the Realize Model

button in the lower-left corner of FDATool.

2 Select the desired optimizations in the Optimization region of the Realize
Model pane. See the following descriptions and illustrations of each
optimization option.

• Optimize for zero gains — Remove zero-gain paths.

3-49

3 Filters

• Optimize for unity gains — Substitute gains equal to one with a wire
(short circuit).

• Optimize for negative gains — Substitute gains equal to -1 with a wire
(short circuit), and change the corresponding sums to subtractions.

• Optimize delay chains — Substitute any delay chain made up of n unit
delays with a single delay by n.

The following diagram illustrates the results of each of these optimizations.

3-50

Analog Filter Design Block

Analog Filter Design Block
The Analog Filter Design block designs and implements analog IIR filters
with standard band configurations. All of the analog filter designs let you
specify a filter order. The other available parameters depend on the filter type
and band configuration, as shown in the following table.

Configuration Butterworth Chebyshev I Chebyshev II Elliptic

Lowpass p p, Rp s, Rs p, Rp, Rs

Highpass p p, Rp s, Rs p, Rp, Rs

Bandpass p1, p2 p1, p2, Rp s1, s2, Rs p1, p2, Rp, Rs

Bandstop p1, p2 p1, p2, Rp s1, s2, Rs p1, p2, Rp, Rs

The table parameters are

• p — passband edge frequency

• p1 — lower passband edge frequency

• p2 — upper cutoff frequency

• s — stopband edge frequency

• s1 — lower stopband edge frequency

• s2 — upper stopband edge frequency

• Rp — passband ripple in decibels

• Rs — stopband attenuation in decibels

For all of the analog filter designs, frequency parameters are in units of
radians per second.

The Analog Filter Design block uses a state-space filter representation, and
applies the filter using the State-Space block in the Simulink Continuous
library. All of the design methods use Signal Processing Toolbox functions to
design the filter:

3-51

3 Filters

• The Butterworth design uses the toolbox function butter.

• The Chebyshev type I design uses the toolbox function cheby1.

• The Chebyshev type II design uses the toolbox function cheby2.

• The elliptic design uses the toolbox function ellip.

The Analog Filter Design block is built on the filter design capabilities
of Signal Processing Toolbox. For more information on the filter design
algorithms, see “Filter Design and Implementation” in the Signal Processing
Toolbox documentation.

Note The Analog Filter Design block does not work with the Simulink
discrete solver, which is enabled when the Solver list is set to discrete (no
continuous states) in the Solver pane of the Configuration Parameters
dialog box. Select one of the continuous solvers (such as ode4) instead.

3-52

Adaptive Filters

Adaptive Filters
Adaptive filters are filters whose coefficients or weights change over time
to adapt to the statistics of a signal. They are used in a variety of fields
including communications, controls, radar, sonar, seismology, and biomedical
engineering.

This section includes the following topics:

Creating an Acoustic Environment
(p. 3-53)

Build a subsystem that models white
noise and colored noise added to an
input signal

Creating an Adaptive Filter (p. 3-55) Build an adaptive filter using an
LMS Filter block

Customizing an Adaptive Filter
(p. 3-60)

Modify your adaptive filter and
change its parameters during
simulation

Adaptive Filtering Demos (p. 3-64) Explore the adaptive filtering demos
in Signal Processing Blockset

Creating an Acoustic Environment
In this topic, you learn how to create an acoustic environment that simulates
both white noise and colored noise added to an input signal. You later use this
environment to build a model capable of adaptive noise cancellation:

1 At the MATLAB command line, type dspanc.

3-53

3 Filters

The Signal Processing Blockset Acoustic Noise Cancellation demo opens.

2 Copy and paste the subsystem called Acoustic Environment into a new
model file.

3 Double-click the Acoustic Environment subsystem.

Gaussian noise is used to create the signal sent to the Exterior Mic output
port. If the input to the Filter port changes from 0 to 1, the Digital Filter
block changes from a lowpass filter to a bandpass filter. The filtered noise
output from the Digital Filter block is added to signal coming from a .wav
file to produce the signal sent to the Pilot’s Mic output port.

You have now created an acoustic environment. In the following topics, you
use this acoustic environment to produce a model capable of adaptive noise
cancellation.

3-54

Adaptive Filters

Creating an Adaptive Filter
In the previous topic, “Creating an Acoustic Environment” on page 3-53, you
created a system that produced two output signals. The signal output at the
Exterior Mic port is composed of white noise. The signal output at the Pilot’s
Mic port is composed of colored noise added to a signal from a .wav file. In
this topic, you create an adaptive filter to remove the noise from the Pilot’s
Mic signal. This topic assumes that you are working on a Windows operating
system:

1 If the model you created in “Creating an Acoustic Environment” on page
3-53 is not open on your desktop, you can open an equivalent model by
typing

doc_adapt1_win32

at the MATLAB command prompt.

2 From the Signal Processing Blockset Filtering library, and then from the
Adaptive Filters library, click-and-drag an LMS Filter block into the model
that contains the Acoustic Environment subsystem.

3 Double-click the LMS Filter block. Set the block parameters as follows,
and then click OK:

• Algorithm = Normalized LMS

• Filter length = 40

• Step size (mu) = 0.002

• Leakage factor (0 to 1) = 1

The block uses the normalized LMS algorithm to calculate the forty filter
coefficients. Setting the Leakage factor (0 to 1) parameter to 1 means
that the current filter coefficient values depend on the filter’s initial
conditions and all of the previous input values.

4 Click-and-drag the following blocks into your model.

3-55

3 Filters

Block Library Quantity

Constant Simulink/Sources 2

Manual Switch Simulink/Signal Routing 1

Terminator Simulink/Sinks 1

To Wave Device Signal Processing Sinks 1

Downsample Signal Operations 1

Waterfall Scope Signal Processing Sinks 1

5 Connect the blocks so that your model resembles the following figure.

6 Double-click the Constant block. Set the Constant value parameter to
0 and then click OK.

3-56

Adaptive Filters

7 Double-click the To Wave Device block. Set the block parameters as follows,
and then click OK:

• Queue duration (seconds) = 0.4

• Initial output delay (seconds) = 0.05

• Select the Use default audio device check box.

8 Double-click the Downsample block. Set the Downsample factor, K
parameter to 32. Click OK.

The filter weights are being updated so often that there is very little change
from one update to the next. To see a more noticeable change, you need to
downsample the output from the Wts port.

9 Double-click the Waterfall Scope block. The Waterfall scope window opens.

10 Click the Scope parameters button.

3-57

3 Filters

The Parameters window opens.

11 Click the Axes tab. Set the parameters as follows:

• Y Min = -0.188

• Y Max = 0.179

12 Click the Data history tab. Set the parameters as follows:

• History traces = 50

• Data logging = All visible

13 Close the Parameters window leaving all other parameters at their
default values.

You might need to adjust the axes in the Waterfall scope window in order
to view the plots.

3-58

Adaptive Filters

14 Click the Fit to view button in the Waterfall scope window. Then,
click-and-drag the axes until they resemble the following figure.

15 In the model window, from the Simulation menu, select Configuration
Parameters. In the Select pane, click Solver. Set the parameters as
follows, and then click OK:

• Stop time = inf

• Type = Fixed-step

• Solver = discrete (no continuous states)

16 Run the simulation and view the results in the Waterfall scope window.
You can also listen to the simulation using the speakers attached to your
computer.

17 Experiment with changing the Manual Switch so that the input to the
Acoustic Environment subsystem is either 0 or 1.

3-59

3 Filters

When the value is 0, the Gaussian noise in the signal is being filtered by a
lowpass filter. When the value is 1, the noise is being filtered by a bandpass
filter. The adaptive filter can remove the noise in both cases.

You have now created a model capable of adaptive noise cancellation. The
adaptive filter in your model is able to filter out both low frequency noise
and noise within a frequency range. In the next topic, “Customizing an
Adaptive Filter” on page 3-60, you modify the LMS Filter block and change its
parameters during simulation.

Customizing an Adaptive Filter
In the previous topic, “Creating an Adaptive Filter” on page 3-55, you created
an adaptive filter and used it to remove the noise generated by the Acoustic
Environment subsystem. In this topic, you modify the adaptive filter and
adjust its parameters during simulation. This topic assumes that you are
working on a Windows operating system:

1 If the model you created in “Creating an Acoustic Environment” on page
3-53 is not open on your desktop, you can open an equivalent model by
typing

doc_adapt2_win32

at the MATLAB command prompt.

2 Double-click the LMS filter block. Set the block parameters as follows,
and then click OK:

• Specify step size via = Input port

• Initial value of filter weights = 0

• Select the Adapt port check box.

• Reset port = Non-zero sample

3-60

Adaptive Filters

The Block Parameters: LMS Filter dialog box should now look similar to
the following figure.

Step-size, Adapt, and Reset ports appear on the LMS Filter block.

3-61

3 Filters

3 Click-and-drag the following blocks into your model.

Block Library Quantity

Constant Simulink/Sources 6

Manual Switch Simulink/Signal Routing 3

4 Connect the blocks as shown in the following figure.

3-62

Adaptive Filters

5 Double-click the Constant2 block. Set the block parameters as follows,
and then click OK:

• Constant value = 0.002

• Select the Interpret vector parameters as 1-D check box.

• Sample time (-1 for inherited) = inf

• Output data type mode = Inherit via back propagation

6 Double-click the Constant3 block. Set the block parameters as follows,
and then click OK:

• Constant value = 0.04

• Select the Interpret vector parameters as 1-D check box.

• Sample time (-1 for inherited) = inf

• Output data type mode = Inherit via back propagation

7 Double-click the Constant4 block. Set the Constant value parameter to
0 and then click OK.

8 Double-click the Constant6 block. Set the Constant value parameter to
0 and then click OK.

9 In the model window, from the Format menu, point to Port/Signal
Displays, and select Wide Nonscalar Lines and Signal Dimensions.

10 Double-click Manual Switch2 so that the input to the Adapt port is 1.

11 Run the simulation and view the results in the Waterfall scope window.
You can also listen to the simulation using the speakers attached to your
computer.

12 Double-click the Manual Switch block so that the input to the Acoustic
Environment subsystem is 1. Then, double-click Manual Switch2 so that
the input to the Adapt port to 0.

The filter weights displayed in the Waterfall scope window remain
constant. When the input to the Adapt port is 0, the filter weights are
not updated.

3-63

3 Filters

13 Double-click Manual Switch2 so that the input to the Adapt port is 1.

The LMS Filter block updates the coefficients.

14 Connect the Manual Switch1 block to the Constant block that represents
0.002. Then, change the input to the Acoustic Environment subsystem.
Repeat this procedure with the Constant block that represents 0.04.

You can see that the system reaches steady state faster when the step
size is larger.

15 Double-click the Manual Switch3 block so that the input to the Reset port
is 1.

The block resets the filter weights to their initial values. In the Block
Parameters: LMS Filter dialog box, from the Reset port list, you chose
Non-zero sample. This means that any nonzero input to the Reset port
triggers a reset operation.

You have now experimented with adaptive noise cancellation using the LMS
Filter block. You adjusted the parameters of your adaptive filter and viewed
the effects of your changes while the model was running.

For more information about adaptive filters, see the following block reference
pages:

• LMS Filter

• RLS Filter

• Block LMS Filter

• Fast Block LMS Filter

Adaptive Filtering Demos
Signal Processing Blockset provides a collection of adaptive filtering demos
that illustrate typical applications of the adaptive filtering blocks, listed in
the following table.

3-64

Adaptive Filters

Adaptive Filtering Demos
Commands for Opening Demos in
MATLAB

LMS Adaptive Equalization lmsadeq

LMS Adaptive Time-Delay
Estimation

lmsadtde

Nonstationary Channel
Estimation

kalmnsce

RLS Adaptive Noise
Cancellation

rlsdemo

Opening Demos
To open the adaptive filter demos, click the links in the preceding table
in the MATLAB Help browser (not in a Web browser), or type the demo
names provided in the table at the MATLAB command line. To access all
Signal Processing Blockset demos, type demo blockset dsp at the MATLAB
command line.

3-65

3 Filters

Multirate Filters
Multirate filters alter the sample rate of the input signal during the filtering
process. Such filters are useful in both rate conversion and filter bank
applications.

This section includes the following topics:

Filter Banks (p. 3-66) Review of dyadic analysis filter
banks and dyadic synthesis filter
banks

Multirate Filtering Examples
(p. 3-74)

Explore a suite of multirate filtering
models

Filter Banks
The Dyadic Analysis Filter Bank block decomposes a broadband signal into a
collection of subbands with smaller bandwidths and slower sample rates. The
Dyadic Synthesis Filter Bank block reconstructs a signal decomposed by the
Dyadic Analysis Filter Bank block.

To use a dyadic synthesis filter bank to perfectly reconstruct the output of a
dyadic analysis filter bank, the number of levels and tree structures of both
filter banks must be the same. In addition, the filters in the synthesis filter
bank must be designed to perfectly reconstruct the outputs of the analysis
filter bank. Otherwise, the reconstruction will not be perfect.

Dyadic Analysis Filter Banks
Dyadic analysis filter banks are constructed from the following basic unit.
The unit can be cascaded to construct dyadic analysis filter banks with either
a symmetric or asymmetric tree structure.

3-66

Multirate Filters

Each unit consists of a lowpass (LP) and highpass (HP) FIR filter pair,
followed by a decimation by a factor of 2. The filters are halfband filters with
a cutoff frequency of Fs / 4, a quarter of the input sampling frequency. Each
filter passes the frequency band that the other filter stops.

The unit decomposes its input into adjacent high-frequency and low-frequency
subbands. Compared to the input, each subband has half the bandwidth (due
to the half-band filters) and half the sample rate (due to the decimation by 2).

Note The following figures illustrate the concept of a filter bank, but not how
the block implements a filter bank; the block uses a more efficient polyphase
implementation.

n-Level Asymmetric Dyadic Analysis Filter Bank

Use the above figure and the following figure to compare the two tree
structures of the dyadic analysis filter bank. Note that the asymmetric
structure decomposes only the low-frequency output from each level, while
the symmetric structure decomposes the high- and low-frequency subbands
output from each level.

3-67

3 Filters

n-Level Symmetric Dyadic Analysis Filter Bank

3-68

Multirate Filters

The following table summarizes the key characteristics of the symmetric and
asymmetric dyadic analysis filter bank.

Notable Characteristics of Asymmetric and Symmetric Dyadic Analysis Filter Banks

Characteristic N-Level Symmetric N-Level Asymmetric

Low- and
High-Frequency
Subband
Decomposition

All the low-frequency
and high-frequency
subbands in a level
are decomposed in the
next level.

Each level’s low-frequency subband is
decomposed in the next level, and each level’s
high-frequency band is an output of the filter
bank.

Number of Output
Subbands

2n n+1

Bandwidth and
Number of Samples
in Output Subbands

For an input with
bandwidth BW
and N samples,
all outputs have
bandwidth BW / 2n

and N / 2n samples.

For an input with bandwidth BW and N
samples, yk has the bandwidth BWk, and Nk
samples, where

BW
BW k n

BW k n
k

k

n
=

≤ ≤

= +

⎧
⎨
⎪

⎩⎪

/ ()

/ ()

2 1

2 1

N
N k n

N k n
k

k

n
=

≤ ≤

= +

⎧
⎨
⎪

⎩⎪

/ ()

/ ()

2 1

2 1

The bandwidth of, and number of samples in
each subband (except the last) is half those of
the previous subband. The last two subbands
have the same bandwidth and number of
samples since they originate from the same
level in the filter bank.

3-69

3 Filters

Notable Characteristics of Asymmetric and Symmetric Dyadic Analysis Filter Banks
(Continued)

Characteristic N-Level Symmetric N-Level Asymmetric

Output Sample
Period

All output subbands
have a sample period
of 2n(Tsi)

Sample period of kth output

=
≤ ≤

= +

⎧
⎨
⎪

⎩⎪

2 1

2 1

k
si

n
si

T k n

T k n

() ()

() ()

Due to the decimations by 2, the sample period
of each subband (except the last) is twice that
of the previous subband. The last two subbands
have the same sample period since they
originate from the same level in the filter bank.

Total Number of
Output Samples

The total number of samples in all of the output subbands is equal to
the number of samples in the input (due to the of decimations by 2 at
each level).

Wavelet
Applications

In wavelet applications, the highpass and lowpass wavelet-based filters
are designed so that the aliasing introduced by the decimations are
exactly canceled in reconstruction.

Dyadic Synthesis Filter Banks
Dyadic synthesis filter banks are constructed from the following basic unit.
The unit can be cascaded to construct dyadic synthesis filter banks with either
a asymmetric or symmetric tree structure as illustrated in the figures entitled
n-Level Asymmetric Dyadic Synthesis Filter Bank and n-Level Symmetric
Dyadic Synthesis Filter Bank.

Each unit consists of a lowpass (LP) and highpass (HP) FIR filter pair,
preceded by an interpolation by a factor of 2. The filters are halfband filters
with a cutoff frequency of Fs / 4, a quarter of the input sampling frequency.
Each filter passes the frequency band that the other filter stops.

3-70

Multirate Filters

The unit takes in adjacent high-frequency and low-frequency subbands, and
reconstructs them into a wide-band signal. Compared to each subband input,
the output has twice the bandwidth and twice the sample rate.

Note The following figures illustrate the concept of a filter bank, but not how
the block implements a filter bank; the block uses a more efficient polyphase
implementation.

n-Level Asymmetric Dyadic Synthesis Filter Bank

Use the above figure and the following figure to compare the two tree
structures of the dyadic synthesis filter bank. Note that in the asymmetric
structure, the low-frequency subband input to each level is the output of
the previous level, while the high-frequency subband input to each level is
an input to the filter bank. In the symmetric structure, both the low- and
high-frequency subband inputs to each level are outputs from the previous
level.

3-71

3 Filters

n-Level Symmetric Dyadic Synthesis Filter Bank

The following table summarizes the key characteristics of symmetric and
asymmetric dyadic synthesis filter banks.

3-72

Multirate Filters

Notable Characteristics of Asymmetric and Symmetric Dyadic Synthesis Filter Banks

Characteristic N-Level Symmetric N-Level Asymmetric

Input Paths
Through the
Filter Bank

The low-frequency subband input
to each level (except the first)
is the output of the previous
level. The low-frequency subband
input to the first level, and the
high-frequency subband input to
each level, are inputs to the filter
bank.

Both the high-frequency and
low-frequency input subbands to each
level (except the first) are the outputs
of the previous level. The inputs to
the first level are the inputs to the
filter bank.

Number of Input
Subbands

2n n+1

Bandwidth
and Number of
Samples in Input
Subbands

All inputs subbands have
bandwidth BW / 2n and N / 2n

samples, where the output has
bandwidth BW and N samples.

For an output with bandwidth BW
and N samples, the kth input subband
has the following bandwidth and
number of samples.

BW
BW k n

BW k n
k

k

n
=

≤ ≤

= +

⎧
⎨
⎪

⎩⎪

/ ()

/ ()

2 1

2 1

N
N k n

N k n
k

k

n
=

≤ ≤

= +

⎧
⎨
⎪

⎩⎪

/ ()

/ ()

2 1

2 1

Input Sample
Periods

All input subbands have a sample
period of 2n(Tso), where the output
sample period is Tso.

Sample period of kth input subband

=
≤ ≤

= +()

⎧
⎨
⎪

⎩⎪

2 1

2 1

k
so

n
so

T k n

T k n

() ()

()

where the output sample period is Tso.

Total Number of
Input Samples

The number of samples in the output is always equal to the total number
of samples in all of the input subbands.

Wavelet
Applications

In wavelet applications, the highpass and lowpass wavelet-based filters
are carefully selected so that the aliasing introduced by the decimation in
the dyadic analysis filter bank is exactly canceled in the reconstruction
of the signal in the dyadic synthesis filter bank.

3-73

3 Filters

For more information, see Dyadic Synthesis Filter Bank.

Multirate Filtering Examples
Signal Processing Blockset provides a collection of multirate filtering demos
and example models that illustrate typical applications of the multirate
filtering blocks. To open the demos and example models, click on the links in
the following tables in the MATLAB Help browser (not in a Web browser), or
type the names provided at the MATLAB command line. To access all Signal
Processing Blockset demos, type demo blockset signal at the MATLAB
command line.

Multirate
Filtering Demos Description

Command for
Opening Demos
in MATLAB

Audio Sample
Rate Conversion

Illustrates sample rate conversion of an audio
signal from 22.050 kHz to 8 kHz using a multirate
FIR rate conversion approach

dspaudiosrc

Denoising Uses the Dyadic Analysis Filter Bank and Dyadic
Synthesis Filter Bank blocks to remove noise from
an input signal

dspwdnois

Sigma-Delta A/D
Converter

Illustrates analog-to-digital conversion using a
sigma-delta algorithm implementation

dspsdadc

Three-Channel
Wavelet
Transmultiplexer

Illustrates the perfect reconstruction property of
the discrete wavelet transform (DWT) by using a
Wavelet Transmultiplexer (WTM) to reconstruct
three independent combined signals transmitted
over a single communications line

dspwvtrnsmx

Wavelet Perfect
Reconstruction
Filter Bank

Illustrates the perfect reconstruction property of a
three-level wavelet filter bank

dspwpr

Wavelet
Reconstruction

Uses a sequence of FIR Interpolation blocks
to reconstruct a wavelet function from filter
coefficients

dspwlet

3-74

Multirate Filters

Multirate
Filtering
Example Models

Description Command for
Opening Example
Models in MATLAB

Frame-Based
Narrowband
Bandpass Filter

Uses FIR Decimation and Interpolation blocks
in multiples stages to create a frame-based
narrowband bandpass filter with low computational
load

doc_mrf_nbpf

Frame-Based
Narrowband
Highpass Filter

Uses FIR Decimation and Interpolation blocks
in multiples stages to create a frame-based
narrowband highpass filter with low computational
load

doc_mrf_nhpf

Frame-Based
Narrowband
Lowpass Filter

Uses FIR Decimation and Interpolation blocks
in multiples stages to create a frame-based
narrowband lowpass filter with low computational
load

doc_mrf_nlpf

Frame-Based
Wideband
Highpass Filter

Uses FIR Decimation and Interpolation blocks in
multiples stages to create a frame-based wideband
highpass filter with low computational load

doc_mrf_whpf

Frame-Based
Wideband
Lowpass Filter

Uses FIR Decimation and Interpolation blocks in
multiples stages to create a frame-based wideband
lowpass filter with low computational load

doc_mrf_wlpf

Sample-Based
Narrowband
Bandpass Filter

Uses FIR Decimation and Interpolation blocks
in multiples stages to create a sample-based
narrowband bandpass filter with low computational
load

doc_mrf_nbp

Sample-Based
Narrowband
Highpass Filter

Uses FIR Decimation and Interpolation blocks
in multiples stages to create a sample-based
narrowband highpass filter with low computational
load

doc_mrf_nhp

Sample-Based
Narrowband
Lowpass Filter

Uses FIR Decimation and Interpolation blocks
in multiples stages to create a sample-based
narrowband lowpass filter with low computational
load

doc_mrf_nlp

3-75

3 Filters

Multirate
Filtering
Example Models

Description Command for
Opening Example
Models in MATLAB

Sample-Based
Wideband
Highpass Filter

Uses FIR Decimation and Interpolation blocks in
multiples stages to create a sample-based wideband
highpass filter with low computational load

doc_mrf_whp

Sample-Based
Wideband
Lowpass Filter

Uses FIR Decimation and Interpolation blocks in
multiples stages to create a sample-based wideband
lowpass filter with low computational load

doc_mrf_wlp

3-76

4

Transforms

The Signal Processing Blockset Transforms library provides blocks for a
number of transforms that are of particular importance in signal processing
applications.

Signals in the Time Domain (p. 4-2) Display frame-based signals in
the time domain and transform
frame-based sinusoidal signals from
the time domain to the frequency
domain

Signals in the Frequency-Domain
(p. 4-9)

Display frame-based signals in the
frequency domain and transform
frame-based sinusoidal signals from
the frequency domain to the time
domain

Linear and Bit-Reversed Output
Order (p. 4-18)

Learn the meaning of linear and
bit-reversed output order as used by
the FFT and IFFT blocks

4 Transforms

Signals in the Time Domain
You can use Signal Processing Blockset to work with signals in both the time
and frequency domain. The Signal Processing Sinks library contains the
following blocks for displaying time-domain signals:

• Time Scope

• Vector Scope

• Matrix Viewer

• Waterfall Scope

This section includes the following topics:

Displaying Time-Domain Data
(p. 4-2)

Use the Vector Scope block to display
two frame-based signals in the time
domain

Transforming Time-Domain Data
into the Frequency Domain (p. 4-5)

Use the FFT block to transform two,
frame-based sinusoidal signals from
the time domain to the frequency
domain

Displaying Time-Domain Data
The following example shows you how you can use the Vector Scope block to
display time-domain signals:

1 At the MATLAB command prompt, type doc_vectorscope_tut.

The Vector Scope Example opens and the variables Fs and mtlb are loaded
into the MATLAB workspace.

4-2

Signals in the Time Domain

When you run this model, two frame-based signals are displayed in the
vectorscope_tut/Vector Scope window.

2 Double-click the Signal From Workspace block. The Block Parameters:
Signal From Workspace dialog box opens.

3 Set the block parameters as follows:

• Signal = mtlb

• Sample time = 1

• Samples per frame = 16

• Form output after final data value = Cyclic Repetition

Based on these parameters, the Signal From Workspace block outputs a
frame-based signal with a frame size of 16 and a sample period of 1 second.
The frame period of the signal is 16 seconds. Your input signal is output
repeatedly from the Signal From Workspace block.

4 Save these parameters and close the dialog box by clicking OK.

4-3

4 Transforms

5 Double-click the Digital Filter Design block.

You are going to use this block to filter the input signal in order to produce
two distinct signals to send to the Vector Scope block.

6 To specify a lowpass filter, in the Response Type section, choose Lowpass.

7 In the Design Method section, choose FIR. Then, from the list, select
Window.

8 In the Filter Order section, select Specify order and enter 22.

9 From the Window list, select Hamming.

10 In the Frequency Specifications section, from the Units list, select
Normalized (0 to 1).

11 In the Frequency Specifications section, set the wc parameter to 0.25.

12 Click Design Filter. Then, close the Block Parameters: Digital Filter
Design dialog box.

13 Double-click the Matrix Concatenation block. The Block Parameters:
Concatenate dialog box opens.

14 Set the block parameters as follows:

• Number of inputs = 2

• Concatenation method = Horizontal.

Based on these parameters, the Matrix Concatenation block combines the
two signals so that each column corresponds to a different signal.

15 Save these parameters and close the dialog box by clicking OK.

16 Double-click the Vector Scope block.

17 Set the block parameters as follows, and then click OK:

• Click the Scope Properties tab.

• Input domain = Time

• Time display span (number of frames) = 2

4-4

Signals in the Time Domain

When you run the model, the Vector Scope block plots two consecutive
frames of each channel at each update.

18 Run the model.

The original and filtered signal appear in the Vector Scope window. You
have now successfully displayed two frame-based signals in the time
domain using the Vector Scope block.

Transforming Time-Domain Data into the Frequency
Domain
When you want to transform time-domain data into the frequency domain,
use the FFT block. You can find additional background information on
transform operations in the “Signal Processing Toolbox” documentation.

In this example, you use the Sine Wave block to generate two frame-based
sinusoids, one at 15 Hz and the other at 40 Hz. You sum the sinusoids
point-by-point to generate the compound sinusoid

u t t= () + ()sin sin30 80π π

Then, you transform this sinusoid into the frequency domain using an FFT
block:

1 At the MATLAB command prompt, type doc_fft_tut.

The FFT Example opens.

4-5

4 Transforms

2 Double-click the Sine Wave block. The Block Parameters: Sine Wave
dialog box opens.

3 Set the block parameters as follows:

• Amplitude = 1

• Frequency = [15 40]

• Phase offset = 0

• Sample time = 0.001

• Samples per frame = 128

Based on these parameters, the Sine Wave block outputs two, frame-based
sinusoidal signals with identical amplitudes, phases, and sample times.
One sinusoid oscillates at 15 Hz and the other at 40 Hz.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Matrix Sum block. The Block Parameters: Matrix Sum
dialog box opens.

4-6

Signals in the Time Domain

6 Set the Sum along parameter to Rows, and then click OK.

Since each column represents a different signal, you need to sum along the
individual rows in order to add the values of the sinusoids at each time step.

7 Double-click the Complex to Magnitude-Angle block. The Block
Parameters: Complex to Magnitude-Angle dialog box opens.

8 Set the Output parameter to Magnitude, and then click OK.

This block takes the complex output of the FFT block and converts this
output to magnitude.

9 Double-click the Vector Scope block.

10 Set the block parameters as follows, and then click OK:

• Click the Scope Properties tab.

• Input domain = Frequency

• Click the Axis Properties tab.

• Frequency units = Hertz (This corresponds to the units of the input
signals.)

• Frequency range = [0...Fs/2]

• Select the Inherit sample time from input check box.

• Amplitude scaling = Magnitude

4-7

4 Transforms

11 Run the model.

The scope shows the two peaks at 0.015 and 0.04 kHz, as expected.

You have now transformed two, frame-based sinusoidal signals from the
time domain to the frequency domain.

Note that the sequence of FFT, Complex to Magnitude-Angle, and Vector Scope
blocks could be replaced by a single Spectrum Scope block, which computes the
magnitude FFT internally. Other blocks that compute the FFT internally are
the blocks in the Power Spectrum Estimation library. See “Power Spectrum
Estimation” on page 6-6 for more information about these blocks.

4-8

Signals in the Frequency-Domain

Signals in the Frequency-Domain
You can use Signal Processing Blockset to work with signals in both the time
and frequency domain. To display frequency-domain signals, you can use
blocks from the Signal Processing Sinks library, such as the Vector Scope,
Spectrum Scope, Matrix Viewer, and Waterfall Scope blocks.

This section includes the following topics:

Displaying Frequency-Domain Data
(p. 4-9)

Use the Spectrum Scope block to
display two, frame-based signals in
the frequency domain

Transforming Frequency-Domain
Data into the Time Domain (p. 4-14)

Use the IFFT block to transform
two, frame-based sinusoidal signals
from the frequency domain to the
time domain

Displaying Frequency-Domain Data
You can use the Spectrum Scope block to display the frequency spectra of
time-domain input data. In contrast to the Vector Scope block, the Spectrum
Scope block computes the FFT of the input signal internally, transforming it
into the frequency domain. In this example, you use a Spectrum Scope block
to display the frequency content of two frame-based signals simultaneously:

1 At the MATLAB command prompt, type doc_spectrumscope_tut.

The Spectrum Scope Example opens.

4-9

4 Transforms

Also, the variables Fs and mtlb are loaded into the MATLAB workspace.

2 Double-click the Signal From Workspace block. Set the block parameters
as follows, and then click OK:

• Signal = mtlb

• Sample time = 1

• Samples per frame = 16

• Form output after final data value = Cyclic Repetition

Based on these parameters, the Signal From Workspace block repeatedly
outputs the input signal, mtlb, as a frame-based signal with a sample
period of 1 second.

4-10

Signals in the Frequency-Domain

3 Use the Digital Filter Design block to filter the input signal to produce
two distinct signals to send to the Spectrum Scope block. Use the default
parameters.

4 Double-click the Matrix Concatenation block. Set the block parameters as
follows, and then click OK:

• Number of inputs = 2

4-11

4 Transforms

• Concatenation method = Horizontal

The Matrix Concatenation block combines the two signals so that each
column corresponds to a different signal.

5 Double-click the Spectrum Scope block. On the Scope Properties tab, set
the block parameters as follows, and then click OK:

• Select the Buffer input check box.

• Buffer size = 128

• Buffer overlap = 64

• Window type = Hann

• Window sampling = Periodic

• Clear the Specify FFT length check box.

• Number of spectral averages = 2

Based on these parameters, the Spectrum Scope block buffers each input
channel to a new frame size of 128 (from the original frame size of 16) with
an overlap of 64 samples between consecutive frames. Because Specify
FFT length is not selected, the frame size of 128 is used as the number of
frequency points in the FFT. This is the number of points plotted for each
channel every time the scope display is updated.

6 Run the model.

4-12

Signals in the Frequency-Domain

7 While the model is running, right-click in the Spectrum Scope window.
Point to Ch1, point to Style, and point to :. Right-click again and point to
Autoscale.

The Spectrum Scope block computes the FFT of each of the input signals.
It then displays the magnitude of the frequency-domain signals in the
Spectrum Scope window.

The FFT of the first input signal, from column one, is the blue dotted
line. The FFT of the second input signal, from column two, is the black
solid line. Every time the scope display is updated, 128 points are plotted
for each channel.

You have now used the Spectrum Scope block to display two, frame-based
signals in the frequency domain.

4-13

4 Transforms

Transforming Frequency-Domain Data into the Time
Domain
When you want to transform frequency-domain data into the time domain,
use the IFFT block. You can find additional background information on
transform operations in the “Signal Processing Toolbox” documentation.

In this example, you use the Sine Wave block to generate two frame-based
sinusoids, one at 15 Hz and the other at 40 Hz. You sum the sinusoids

point-by-point to generate the compound sinusoid, u t t= () +sin sin()30 80π π .
You transform this sinusoid into the frequency domain using an FFT block,
and then immediately transform the frequency-domain signal back to the
time domain using the IFFT block. Lastly, you plot the difference between
the original time-domain signal and transformed time-domain signal using
a scope:

1 At the MATLAB command prompt, type doc_ifft_tut.

The IFFT Example opens.

4-14

Signals in the Frequency-Domain

2 Double-click the Sine Wave block. The Block Parameters: Sine Wave
dialog box opens.

3 Set the block parameters as follows:

• Amplitude = 1

• Frequency = [15 40]

• Phase offset = 0

• Sample time = 0.001

• Samples per frame = 128

Based on these parameters, the Sine Wave block outputs two, frame-based
sinusoidal signals with identical amplitudes, phases, and sample times.
One sinusoid oscillates at 15 Hz and the other at 40 Hz.

4 Save these parameters and close the dialog box by clicking OK.

5 Double-click the Matrix Sum block. The Block Parameters: Matrix Sum
dialog box opens.

6 Set the Sum along parameter to Rows, and then click OK.

Since each column represents a different signal, you need to sum along the
individual rows in order to add the values of the sinusoids at each time step.

7 Double-click the FFT block. The Block Parameters: FFT dialog box
opens.

8 Select the Output in bit-reversed order check box., and then click OK.

9 Double-click the IFFT block. The Block Parameters: IFFT dialog box
opens.

10 Set the block parameters as follows, and then click OK:

• Select the Input is in bit-reversed order check box.

• Select the Input is conjugate symmetric check box.

4-15

4 Transforms

Because the original sinusoidal signal is real valued, the output of the FFT
block is conjugate symmetric. By conveying this information to the IFFT
block, you optimize its operation.

Note that the Sum block subtracts the original signal from the output of
the IFFT block, which is the estimation of the original signal.

11 Double-click the Vector Scope block.

12 Set the block parameters as follows, and then click OK:

• Click the Scope Properties tab.

• Input domain = Time

13 Run the model.

The flat line on the scope suggests that there is no difference between the
original signal and the estimate of the original signal. Therefore, the IFFT

4-16

Signals in the Frequency-Domain

block has accurately reconstructed the original time-domain signal from
the frequency-domain input.

14 Right-click in the Vector Scope window, and select Autoscale.

In actuality, the two signals are identical to within round-off error. The
previous figure shows the enlarged trace. The differences between the
two signals is on the order of 10-15.

4-17

4 Transforms

Linear and Bit-Reversed Output Order
The FFT block enables you to output the frequency indices in linear or
bit-reversed order. Because linear ordering of the frequency indices requires
a butterfly operation, in some situations, the FFT block runs more quickly
when the output frequencies are in bit-reversed order.

The input to the IFFT block can be in linear or bit-reversed order. Therefore,
you do not have to alter the ordering of your data before transforming it back
into the time domain.

Finding the Bit-Reversed Order of Your Frequency
Indices
Two numbers are bit-reversed values of each other when the binary
representation of one is the mirror image of the binary representation of
the other. For example, in a three-bit system, one and four are bit-reversed
values of each other, since the three-bit binary representation of one, 001,
is the mirror image of the three-bit binary representation of four, 100. In
the diagram below, the frequency indices are in linear order. To put them
in bit-reversed order

1 Translate the indices into their binary representation with the minimum
number of bits. In this example, the minimum number of bits is three
because the binary representation of 7 is 111.

2 Find the mirror image of each binary entry, and write it beside the original
binary representation.

3 Translate the indices back to their decimal representation.

The frequency indices are now in bit-reversed order.

4-18

Linear and Bit-Reversed Output Order

The next diagram illustrates the linear and bit-reversed outputs of the FFT
block. The output values are the same, but they appear in different order.

4-19

4 Transforms

4-20

5

Quantizers

This chapter shows you how to design and use scalar and vector quantizer
blocks. You create several scalar quantizer blocks and use them to encode and
decode signals in your model. Then, you use vector quantizer encoder and
decoder blocks to quantize vectors of data.

Scalar Quantizers (p. 5-2) Learn how to design scalar
quantizers and use them to quantize
signals in your model

Vector Quantizers (p. 5-12) Quantize your vector signal using
vector quantizers

5 Quantizers

Scalar Quantizers
You can use blocks from the Signal Processing Blockset Quantizers library to
design scalar quantizer encoders and decoders. Quantization is the process of
representing a signal with a reduced level of precision. If you decrease the
number of bits allocated for the quantization of your speech signal, the signal
would be distorted and the speech quality would degrade. In this section, you
create two scalar quantizer encoders and two scalar quantizer decoders and
use them to encode and decode signals in a demo model.

This section includes the following topics:

Analysis and Synthesis of Speech
(p. 5-2)

Learn the theory behind signal
transmission

Identifying Your Residual Signal
and Reflection Coefficients (p. 5-4)

Define the residual signal and
the reflection coefficients in your
MATLAB workspace

Creating a Scalar Quantizer (p. 5-6) Design two scalar quantizer
encoders and two scalar quantizer
decoders and use them to quantize
your residual signal and reflection
coefficients

Analysis and Synthesis of Speech
A speech signal is usually represented in digital format, which is a sequence
of binary bits. For storage and transmission applications, it is desirable
to compress a signal by representing it with as few bits as possible, while
maintaining its perceptual quality.

In narrowband digital speech compression, speech signals are sampled at
a rate of 8000 samples per second. Typically, each sample is represented
by 8 bits. This corresponds to a bit rate of 64 kbits per second. Further
compression is possible at the cost of quality. Most of the current low bit
rate speech coders are based on the principle of linear predictive speech
coding. An implementation of this compression technique is presented in the
linear prediction coefficient (LPC) Analysis and Synthesis of Speech (dsplpc)

5-2

Scalar Quantizers

demo. This topic describes this demo, which models the theory behind signal
transmission:

1 Open the LPC Analysis and Synthesis of Speech demo by typing dsplpcat
the MATLAB command line.

This model preemphasizes the input speech signal by applying an FIR
filter. Then, it calculates the reflection coefficients of each frame using the
Levinson-Durbin algorithm. The model uses these reflection coefficients
to create the linear prediction analysis filter (lattice-structure). Next,
the model calculates the residual signal by filtering each frame of the
preemphasized speech samples using the reflection coefficients. The
residual signal, which is the output of the analysis stage, usually has a
lower energy than the input signal. The blocks in the synthesis stage of the
model filter the residual signal using the reflection coefficients and apply an
all-pole deemphasis filter. Note that the deemphasis filter is the inverse of
the preemphasis filter. The result is the full recovery of the original signal.

2 Run this model.

5-3

5 Quantizers

3 Double-click the Original Signal and Processed Signal blocks and listen to
both the original and the processed signal.

There is no difference between the two because no quantization was
performed. The model fully recovered the original signal.

To better approximate a real-world speech analysis and synthesis system, you
need to quantize the residual signal and reflection coefficients before they are
transmitted. The following topics show you how to design scalar quantizers to
accomplish this task.

Identifying Your Residual Signal and Reflection
Coefficients
In the previous topic, “Analysis and Synthesis of Speech” on page 5-2,
you learned the theory behind the LPC Analysis and Synthesis of Speech
(dsplpc) demo. In this topic, you define the residual signal and the reflection
coefficients in your MATLAB workspace as the variables E and Ked,
respectively. Later, you use these values to create your scalar quantizers:

1 Open the LPC Analysis and Synthesis of Speech demo by typing dsplpc at
the MATLAB command line.

2 Save the dsplpc model file as scalar_quantizer_example.mdl in your
working directory.

3 From the Signal Processing Sinks library, click-and-drag two Signal To
Workspace blocks into your model.

4 Connect the output of the Levinson-Durbin block to one of the Signal To
Workspace blocks.

5 Double-click this Signal To Workspace block and set the Variable name
parameter to K. Click OK.

6 Connect the output of the Time-Varying Analysis Filter block to the other
Signal To Workspace block.

5-4

Scalar Quantizers

7 Double-click this Signal To Workspace block and set the Variable name
parameter to E. Click OK.

You model should now look similar to this figure.

8 Run your model.

The residual signal, E, and your reflection coefficients, K, are defined in the
MATLAB workspace. In the next topic, you use these variables to design
your scalar quantizers.

5-5

5 Quantizers

Creating a Scalar Quantizer
In this topic, you create scalar quantizer encoders and decoders to quantize
the residual signal, E, and the reflection coefficients, K:

1 If the model you created in “Identifying Your Residual Signal and Reflection
Coefficients” on page 5-4 is not open on your desktop, you can open an
equivalent model by typing

doc_scalar_quantizer_example

at the MATLAB command prompt.

2 Run this model to define the variables E and K in the MATLAB workspace.

3 From the Quantizers library, click-and-drag a Scalar Quantizer Design
block into your model. Double-click this block to open the SQ Design Tool
GUI.

4 For the Training Set parameter, enter K.

The variable K represents the reflection coefficients you want to quantize.
By definition, they range from -1 to 1.

Note Theoretically, the signal that is used as the Training Set parameter
should contain a representative set of values for the parameter to be
quantized. However, this example provides an approximation to this global
training process.

5 For the Number of levels parameter, enter 128.

Assume that your compression system has 7 bits to represent each
reflection coefficient. This means it is capable of representing 27 or 128
values. The Number of levels parameter is equal to the total number of
codewords in the codebook.

6 Set the Block type parameter to Both.

7 For the Encoder block name parameter, enter SQ Encoder -
Reflection Coefficients.

5-6

Scalar Quantizers

8 For the Decoder block name parameter, enter SQ Decoder -
Reflection Coefficients.

9 Make sure that your desired destination model,
scalar_quantizer_example.mdl, is the current model. You can type gcs in
the MATLAB Command Window to display the name of your current model.

5-7

5 Quantizers

10 In the SQ Design Tool GUI, click the Design and Plot button to apply the
changes you made to the parameters.

The GUI should look similar to the following figure.

5-8

Scalar Quantizers

11 Click the Generate Model button.

Two new blocks, SQ Encoder - Reflection Coefficients and SQ Decoder -
Reflection Coefficients, appear in your model file.

12 Click the SQ Design Tool GUI and, for the Training Set parameter, enter E.

13 Repeat steps 5 to 11 for the variable E, which represents the residual signal
you want to quantize. In steps 6 and 7, name your blocks SQ Encoder -
Residual and SQ Decoder - Residual.

Once you have completed these steps, two new blocks, SQ Encoder -
Residual and SQ Decoder - Residual, appear in your model file.

14 Close the SQ Design Tool GUI. You do not need to save the SQ Design
Tool session.

You have now created a scalar quantizer encoder and a scalar quantizer
decoder for each signal you want to quantize. You are ready to quantize the
residual signal, E, and the reflection coefficients, K.

5-9

5 Quantizers

15 Connect the blocks so your model looks similar to the following figure.

16 Run your model.

17 Double-click the Original Signal and Processed Signal blocks, and listen
to both signals.

Again, there is no perceptible difference between the two. You can therefore
conclude that quantizing your residual and reflection coefficients did not
affect the ability of your system to accurately reproduce the input signal.

You have now quantized the residual and reflection coefficients in the LPC
Analysis and Synthesis of Speech demo model. The bit rate of a quantization
system is calculated as (bits per frame)*(frame rate).

In this example, the bit rate is [(80 residual samples/frame)*(7 bits/sample) +
(12 reflection coefficient samples/frame)*(7 bits/sample)]*(100 frames/second),
or 64.4 kbits per second. This is higher than most modern speech coders,
which typically have a bit rate of 8 to 24 kbits per second. If you decrease the

5-10

Scalar Quantizers

number of bits allocated for the quantization of the reflection coefficients or
the residual signal, the overall bit rate would decrease. However, the speech
quality would also degrade.

For information about decreasing the bit rate without affecting speech quality,
see “Vector Quantizers” on page 5-12.

5-11

5 Quantizers

Vector Quantizers
In the previous section, you created scalar quantizer encoders and decoders
and used them to quantize your residual signal and reflection coefficients.
The bit rate of your scalar quantization system was 64.4 kbits per second.
This bit rate is higher than most modern speech coders. To accommodate a
greater number of users in each channel, you need to lower this bit rate while
maintaining the quality of your speech signal. You can use vector quantizers,
which exploit the correlations between each sample of a signal, to accomplish
this task. In this section, you quantize your reflection coefficients using vector
quantizers to reduce the bit rate of your system.

This section includes the following topics:

Building Your Vector Quantizer
Model (p. 5-12)

Reconfigure your scalar quantization
model to use vector quantizers to
quantize your reflection coefficients

Configuring and Running Your
Model (p. 5-14)

Set your model parameters and use
a split vector quantizer to quantize
your reflection coefficients

Building Your Vector Quantizer Model
In this topic, you modify your scalar quantization model so that you are using
a split vector quantizer to quantize your reflection coefficients:

1 If the model you created in “Creating a Scalar Quantizer” on page 5-6 is not
open on your desktop, you can open an equivalent model by typing

doc_scalar_quantizer_example2

at the MATLAB command prompt.

2 Delete the SQ Encoder - Reflection Coefficients and SQ Decoder - Reflection
Coefficients blocks.

3 At the MATLAB command prompt, type dspcelpcoder.

5-12

Vector Quantizers

The Signal Processing Blockset CELP-Based Vocoder demo opens. This
demo quantizes linear prediction parameters using the split vector
quantization method.

4 Double-click the CELP Encoder subsystem, and then double-click the
Frame Analysis subsystem. Copy the LSF Vector Quantization subsystem
and paste it in your model.

You use this subsystem to encode and decode your reflection coefficients
using the split vector quantization method.

5 From the Simulink library, and then from the Sinks library, click-and-drag
a Terminator block into your model.

6 From the Signal Processing Blockset library, from the Estimation library,
and then from the Linear Prediction library, click-and-drag a LSF/LSP to
LPC Conversion block and two LPC to/from RC blocks into your model.

5-13

5 Quantizers

7 Connect the blocks as shown in the following figure. You do not need to
connect Terminator blocks to the P ports of the LPC to/from RC blocks.
These ports disappear once you set block parameters.

You have modified your model to include a subsystem capable of vector
quantization. In the next topic, you reset your model parameters to quantize
your reflection coefficients using the split vector quantization method.

Configuring and Running Your Model
In the previous topic, you configured your scalar quantization model for vector
quantization by adding the LSF Vector Quantization subsystem. In this topic,
you set your block parameters and quantize your reflection coefficients using
the split vector quantization method:

5-14

Vector Quantizers

1 If the model you created in “Building Your Vector Quantizer Model” on
page 5-12 is not open on your desktop, you can open an equivalent model
by typing

doc_vector_quantizer_example

at the MATLAB command prompt.

2 Double-click the LSF Vector Quantization subsystem, and then double-click
the LSF Split VQ subsystem.

The subsystem opens, and you see the three Vector Quantizer Encoder
blocks used to implement the split vector quantization method.

This subsystem divides each vector of 10 line spectral frequencies (LSFs),
which represent your reflection coefficients, into three LSF subvectors.
Each of these subvectors is sent to a separate vector quantizer. This method
is called split vector quantization.

5-15

5 Quantizers

3 Double-click the VQ of LSF: 1st subvector block.

The Block Parameters: VQ of LSF: 1st subvector dialog box opens.

The variable CB_lsf1to3_10bit is the codebook for the subvector that
contains the first three elements of the LSF vector. It is a 3-by-1024
matrix, where 3 is the number of elements in each codeword and 1024 is

the number of codewords in the codebook. Because 2 102410 = , it takes 10
bits to quantize this first subvector. Similarly, a 10-bit vector quantizer is
applied to the second and third subvectors, which contain elements 4 to 6
and 7 to 10 of the LSF vector, respectively. Therefore, it takes 30 bits to
quantize all three subvectors.

5-16

Vector Quantizers

Note If you used the vector quantization method to quantize your reflection
coefficients, you would need 230or 1.0737e9 codebook values to achieve the
same degree of accuracy as the split vector quantization method.

4 In your model file, double-click the Autocorrelation block and set the
Maximum non-negative lag (less than input length) parameter to
10. Click OK.

This parameter controls the number of linear polynomial coefficients
(LPCs) that are input to the split vector quantization method.

5 Double-click the LPC to/from RC block that is connected to the input of
the LSF Vector Quantization subsystem. Clear the Output normalized
prediction error power check box. Click OK.

6 Double-click the LSF/LSP to LPC Conversion block and set the Input
parameter to LSF in range (0 to pi). Click OK.

7 Double-click the LPC to/from RC block that is connected to the output
of the LSF/LSP to LPC Conversion block. Set the Type of conversion
parameter to LPC to RC, and clear the Output normalized prediction
error power check box. Click OK.

8 At the MATLAB command prompt, type load lpcvocoder.

The codebook values for your vector quantizer are loaded into memory. You
have now configured the parameters of your vector quantizer model and
are ready to quantize your reflection coefficients.

5-17

5 Quantizers

9 Run your model.

10 Double-click the Original Signal and Processed Signal blocks to listen to
both the original and the processed signal.

There is no perceptible difference between the two. Quantizing your
reflection coefficients using a split vector quantization method produced
good quality speech without much distortion.

You have now used the split vector quantization method to quantize your
reflection coefficients. The vector quantizers in the LSF Vector Quantization
subsystem use 30 bits to quantize a frame containing 80 reflection coefficients.
The bit rate of a quantization system is calculated as (bits per frame)*(frame
rate).

5-18

Vector Quantizers

In this example, the bit rate is [(80 residual samples/frame)*(7 bits/sample) +
(30 bits/frame)]*(100 frames/second), or 59 kbits per second. This is less than
64.4 kbits per second, the bit rate of the scalar quantization system. However,
the quality of the speech signal did not degrade. If you want to further
reduce the bit rate of your system, you can use the LSF Vector Quantization
subsystem to quantize the residual signal.

This example illustrates how you can use vector quantization to reduce the
bit rate of your coder.

5-19

5 Quantizers

5-20

6

Statistics, Estimation, and
Linear Algebra

This chapter describes several standard operations involved in simulating
signal processing models.

Statistics (p. 6-2) Learn to perform statistical
operations such as minimum,
maximum, mean, variance, and
standard deviation

Power Spectrum Estimation (p. 6-6) Use the blocks in the Power
Spectrum Estimation library to
perform spectral analysis

Linear Algebra (p. 6-7) Solve systems of linear equations

6 Statistics, Estimation, and Linear Algebra

Statistics
The Statistics library provides fundamental statistical operations such as
minimum, maximum, mean, variance, and standard deviation. Most blocks in
the Statistics library support two types of operations:

• “Basic Operations” on page 6-2

• “Running Operations” on page 6-4

The blocks listed below toggle between basic and running modes using the
Running check box in the parameter dialog box:

• Histogram

• Mean

• RMS

• Standard Deviation

• Variance

An unselected Running check box means that the block is operating in
basic mode, while a selected Running box means that the block is operating
in running mode.

The Maximum and Minimum blocks are slightly different from the blocks
above, and provide a Mode parameter in the block dialog box to select the
type of operation. The Value and Index, Value, and Index options in the
Mode menu all specify basic operation, in each case enabling a different set
of output ports on the block. The Running option in the Mode menu selects
running operation.

The following sections explain how basic mode and running mode differ:

Basic Operations
A basic operation is one that processes each input independently of previous
and subsequent inputs. For example, in basic mode (with Value and Index
selected, for example) the Maximum block finds the maximum value in each
column of the current input, and returns this result at the top output (Val).

6-2

Statistics

Each consecutive Val output therefore has the same number of columns as
the input, but only one row. Furthermore, the values in a given output only
depend on the values in the corresponding input. The block repeats this
operation for each successive input.

This type of operation is exactly equivalent to the MATLAB command

val = max(u) % Equivalent MATLAB code

which computes the maximum of each column in input u.

The next section is an example of a basic statistical operation.

Example: Sliding Windows
You can use the basic statistics operations in conjunction with the Buffer
block to implement basic sliding window statistics operations. A sliding
window is like a stencil that you move along a data stream, exposing only a
set number of data points at one time.

For example, you may want to process data in 128-sample frames, moving the
window along by one sample point for each operation. One way to implement
such a sliding window is shown in the model below.

The Buffer block’s Buffer size (Mo) parameter determines the size of the
window. The Buffer overlap (L) parameter defines the “slide factor” for
the window. At each sample instant, the window slides by Mo-L points. The
Buffer overlap is often Mo-1 (the same as the Delay Line block), so that a
new statistic is computed for every new signal sample.

To build the model, make the following settings:

• In the Signal From Workspace block, set:

- Signal = 1:256

6-3

6 Statistics, Estimation, and Linear Algebra

- Sample time = 0.1

- Samples per frame = 1

• In the Buffer block, set:

- Output buffer size (per channel) = 128

- Buffer overlap = 127

Running Operations
A running operation is one that processes successive sample-based or
frame-based inputs, and computes a result that reflects both present and past
inputs. A reset port enables you to restart this tracking at any time. The
running statistic is computed for each input channel independently, so the
block’s output is the same size as the input.

For example, in running mode (Running selected from the Mode parameter)
the Maximum block outputs a record of the input’s maximum value over time.

6-4

Statistics

The figure below illustrates how a Maximum block in running mode operates
on a frame-based 3-by-2 (two-channel) matrix input, u. The running maximum
is reset at t=2 by an impulse to the block’s optional Rst port.

6-5

6 Statistics, Estimation, and Linear Algebra

Power Spectrum Estimation
The Power Spectrum Estimation library provides a number of blocks for
spectral analysis. Many of them have correlates in Signal Processing Toolbox,
which are shown in parentheses:

• Burg Method (pburg)

• Covariance Method (pcov)

• Magnitude FFT (periodogram)

• Modified Covariance Method (pmcov)

• Short-Time FFT

• Yule-Walker Method (pyulear)

See “Spectral Analysis” in the Signal Processing Toolbox documentation for
an overview of spectral analysis theory and a discussion of the above methods.

Signal Processing Blockset provides two demos that illustrate the spectral
analysis blocks:

• A Comparison of Spectral Analysis Techniques (dspsacomp)

• Spectral Analysis: Short-Time FFT (dspstfft)

6-6

Linear Algebra

Linear Algebra
The Matrices and Linear Algebra library provides three large sublibraries
containing blocks for linear algebra:

• “Linear System Solvers” on page 6-7

• “Matrix Factorizations” on page 6-8

• “Matrix Inverses” on page 6-10

A third library, Matrix Operations, provides other essential blocks for working
with matrices. See Chapter 1, “Working with Signals” for more information
about matrix signals.

The following sections provide examples to help you get started with the
linear algebra blocks:

Linear System Solvers
The Linear System Solvers library provides the following blocks for solving
the system of linear equations AX = B:

• Autocorrelation LPC

• Cholesky Solver

• Forward Substitution

• LDL Solver

• Levinson-Durbin

• LU Solver

• QR Solver

• SVD Solver

Some of the blocks offer particular strengths for certain classes of problems.
For example, the Cholesky Solver block is particularly adapted for a square
Hermitian positive definite matrix A, whereas the Backward Substitution
block is particularly suited for an upper triangular matrix A.

6-7

6 Statistics, Estimation, and Linear Algebra

Example: LU Solver
In the model below, the LU Solver block solves the equation Ax = b, where

A b=
−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

= −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 2 3
4 0 6
2 1 3

1
2
1

and finds x to be the vector [-2 0 1]'.

To build the model, set the following parameters:

• In the DSP Constant block, set Constant value = [1 -2 3;4 0 6;2 -1 3].

• In the DSP Constant1 block, set Constant value = [1 -2 -1]'.

You can verify the solution by using the Matrix Multiply block to perform the
multiplication Ax, as shown in the model below.

Matrix Factorizations
The Matrix Factorizations library provides the following blocks for factoring
various kinds of matrices:

6-8

Linear Algebra

• Cholesky Factorization

• LDL Factorization

• LU Factorization

• QR Factorization

• Singular Value Decomposition

Some of the blocks offer particular strengths for certain classes of problems.
For example, the Cholesky Factorization block is particularly suited to
factoring a Hermitian positive definite matrix into triangular components,
whereas the QR Factorization is particularly suited to factoring a rectangular
matrix into unitary and upper triangular components.

Example: LU Factorization
In the model below, the LU Factorization block factors a matrix Ap into upper
and lower triangular submatrices U and L, where Ap is row equivalent to
input matrix A, where

To build the model, in the DSP Constant block, set the Constant value
parameter to [1 -2 3;4 0 6;2 -1 3].

The lower output of the LU Factorization, P, is the permutation index
vector, which indicates that the factored matrix Ap is generated from A by
interchanging the first and second rows.

6-9

6 Statistics, Estimation, and Linear Algebra

Ap = −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4 0 6
1 2 3
2 1 3

The upper output of the LU Factorization, LU, is a composite matrix containing
the two submatrix factors, U and L, whose product LU is equal to Ap.

U L= −
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4 0 6
0 2 1 5
0 0 0 75

1 0 0
0 25 1 0
0 5 0 5 1

.

.
.
. .

You can check that LU = Ap with the Matrix Multiply block, as shown in
the model below.

Matrix Inverses
The Matrix Inverses library provides the following blocks for inverting various
kinds of matrices:

• Cholesky Inverse

• LDL Inverse

• LU Inverse

• Pseudoinverse

Example: LU Inverse
In the model below, the LU Inverse block computes the inverse of input
matrix A, where

6-10

Linear Algebra

A =
−

−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1 2 3
4 0 6
2 1 3

and then forms the product A-1A, which yields the identity matrix of order 3,
as expected.

To build the model, in the DSP Constant block, set the Constant value
parameter to [1 -2 3;4 0 6;2 -1 3].

As shown above, the computed inverse is

A− =
− −

−
−

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
1 0 5 2

0 0 5 1
0 6667 0 5 1 333

.
.

. . .

6-11

6 Statistics, Estimation, and Linear Algebra

6-12

7

Data Type Support

All Signal Processing Blockset blocks support the single- and double-precision
floating-point data type. Many blocks support other data types.

Supported Data Types and How to
Convert to Them (p. 7-2)

Overview of the data types supported
by Signal Processing Blockset

Block Data Type Support Table
(p. 7-4)

A table that shows the data types
accepted on the data ports of each
Signal Processing Blockset block

Viewing Data Types of Signals In
Models (p. 7-13)

Enable data type labels of the signals
in a Simulink model

Boolean Support (p. 7-14) Learn about Signal Processing
Blockset blocks that accept or output
logical signals

7 Data Type Support

Supported Data Types and How to Convert to Them

Note All data type support applies to both simulation and Real-Time
Workshop C code generation. All Signal Processing Blockset blocks support
single- and double-precision floating point.

The following table lists all data types supported by Signal Processing
Blockset, and how to convert to these data types. To see which data types
a particular block supports, see the “Supported Data Types” section in the
block’s reference page.

Supported Data Types and How to Convert to Them

Data Types
Supported
by Signal
Processing
Blockset Blocks

Commands and Blocks for
Converting Data Types Comments

Double-precision
floating point

• double

• Data Type Conversion block

Simulink built-in data type supported by
all Signal Processing Blockset blocks.

Single-precision
floating point

• single

• Data Type Conversion block

Simulink built-in data type supported by
all Signal Processing Blockset blocks.

Boolean • Data Type Conversion block Simulink built-in data type. To learn more,
see “Boolean Support” on page 7-14.

Integer (8-,16-,
or 32-bits)

• int8, int16, int32

• Data Type Conversion block

Simulink built-in data type

7-2

Supported Data Types and How to Convert to Them

Supported Data Types and How to Convert to Them (Continued)

Data Types
Supported
by Signal
Processing
Blockset Blocks

Commands and Blocks for
Converting Data Types Comments

Unsigned integer
(8-,16-, or
32-bits)

• uint8, uint16, uint32

• Data Type Conversion block

Simulink built-in data type

Fixed-point data
types

• Data Type Conversion block

• Simulink Fixed Point
num2fixpt function

• Functions and GUIs for
designing quantized filters
with the “Filter Design
Toolbox” (compatible with
Filter Realization Wizard
block)

To learn more about fixed-point data types
in Signal Processing Blockset, see Chapter
8, “Working with Fixed-Point Data”.

7-3

7 Data Type Support

Block Data Type Support Table
The following table shows what data types are accepted on the main input
data ports of each Signal Processing Blockset block. If the block is a source,
the table shows what data types are accepted on the main output data ports
of each source block.

If the Double, Single, and/or Boolean, columns are populated by a x, the
block supports those data types.

• If the Base Integer and/or Fixed-Point columns are populated with an s,
the block supports signed integers and/or fixed-point data types.

• If the Base Integer and/or Fixed-Point columns are populated with a u,
the block supports unsigned integers and/or fixed-point data types.

All blocks in Signal Processing Blockset support code generation. Notes are
included in the table to provide more information about code generation for
certain blocks.

Block Double Single Boolean Base
Integer

Fixed-
Point

Code
Generation

Analog Filter Design x x(N4, N5)

Analytic Signal x x x(N2)

Arbitrary Magnitude Filter x x s,u s,u x

Autocorrelation x x s s x(N2)

Autocorrelation LPC x x x(N2)

Backward Substitution x x s s x(N2)

Bandpass Filter x x s,u s,u x

Bandstop Filter x x s,u s,u x

Block LMS Filter x x x(N2)

Buffer x x x s,u s,u x(N2)

Burg AR Estimator x x x

Burg Method x x x

7-4

Block Data Type Support Table

Block Double Single Boolean Base
Integer

Fixed-
Point

Code
Generation

Check Signal Attributes x x x s,u s,u x

Chirp x x x

Cholesky Factorization x x x(N2)

Cholesky Inverse x x x(N2)

Cholesky Solver x x x(N2)

CIC Compensator x x s,u s,u x

CIC Decimation s s x(N2)

CIC Interpolation s s x(N2)

Complex Cepstrum x x x(N2)

Complex Exponential x x x

Constant Diagonal Matrix x x s,u s,u x

Constant Ramp x x s,u s,u x(N2)

Convert 1-D to 2-D x x x s,u s,u x

Convert 2-D to 1-D x x x s,u s,u x

Convolution x x s s x

Correlation x x s s x

Counter x x x s,u x

Covariance AR Estimator x x x(N2)

Covariance Method x x x

Create Diagonal Matrix x x x s,u s,u x(N2)

Cumulative Product x x s,u s,u x(N2)

Cumulative Sum x x s,u s,u x(N2)

Data Type Conversion Simulink block

dB Conversion x x x

dB Gain x x s,u s,u x

7-5

7 Data Type Support

Block Double Single Boolean Base
Integer

Fixed-
Point

Code
Generation

DCT x x s,u s,u x(N2)

Delay x x x s,u s,u x(N2)

Delay Line x x x s,u s,u x(N2)

Detrend x x x(N2)

Difference x x s,u s,u x

Differentiator Filter x x s,u s,u x

Digital Filter x x s s x(N2)

Digital Filter Design x x x(N2)

Discrete Impulse x x x s,u s,u x

Display Simulink block

Downsample x x x s,u s,u x(N2)

DSP Constant x x x s,u s,u x

DWT x x x(N2)

Dyadic Analysis Filter Bank x x x(N2)

Dyadic Synthesis Filter
Bank

x x x(N2)

Edge Detector x x x s,u s,u x(N2)

Event-Count Comparator x x x s,u s,u x(N2)

Extract Diagonal x x x s,u s,u x(N2)

Extract Triangular Matrix x x x s,u s,u x(N2)

Fast Block LMS Filter x x x(N2)

FFT x x s,u s,u x

Filter Realization Wizard x x s,u s,u x

FIR Decimation x x s,u s,u x(N2)

FIR Interpolation x x s,u s,u x(N2)

FIR Rate Conversion x x s,u s,u x(N2)

7-6

Block Data Type Support Table

Block Double Single Boolean Base
Integer

Fixed-
Point

Code
Generation

Flip x x x s,u s,u x(N2)

Forward Substitution x x s s x(N2)

Fractional Delay Filter x x s,u s,u x

Frame Conversion x x x s,u s,u x

From Wave Device
x x

s 16-bit
u 8-bit

x

From Wave File
x x

s 16-bit
u 8-bit

x

G711 Codec s 16-bit x

Halfband Filter x x s,u s,u x

Highpass Filter x x s,u s,u x

Hilbert Filter x x s,u s,u x

Histogram x x s,u s,u x(N2)

IDCT x x s,u s,u x(N2)

Identity Matrix x x x s,u s,u x(N2)

IDWT x x x(N2)

IFFT x x s,u s,u x

Inherit Complexity x x x s,u s,u x(N2)

Interpolation x x x

Inverse Short-Time FFT x x x(N2)

Inverse Sinc Filter x x s,u s,u x

Kalman Adaptive Filter x x x(N2)

LDL Factorization x x s s x(N2)

LDL Inverse x x x(N2)

LDL Solver x x x(N2)

7-7

7 Data Type Support

Block Double Single Boolean Base
Integer

Fixed-
Point

Code
Generation

Least Squares Polynomial
Fit

x x x(N2)

Levinson-Durbin x x s s x(N2)

LMS Adaptive Filter x x x

LMS Filter x x s,u s,u x(N2)

Lowpass Filter x x s,u s,u x

LPC to LSF/LSP Conversion x x x(N2)

LSF/LSP to LPC Conversion x x x

LPC to/from Cepstral
Coefficients

x x x

LPC to/from RC x x x

LPC/RC to Autocorrelation x x x

LU Factorization x x s s x(N2)

LU Inverse x x x(N2)

LU Solver x x x(N2)

Magnitude FFT x x s s x(N2)

Matrix 1-Norm x x s s x

Matrix Concatenation Simulink block

Matrix Exponential x x x(N2)

Matrix Multiply x x x s,u s,u x

Matrix Product x x s,u s,u x(N2)

Matrix Scaling x x s s x

Matrix Square x x x

Matrix Sum x x s,u s,u x(N2)

Matrix Viewer x x x s,u s,u x(N1)

Maximum x x s,u s,u x

7-8

Block Data Type Support Table

Block Double Single Boolean Base
Integer

Fixed-
Point

Code
Generation

Mean x x s s x

Median x x s,u s,u x(N2)

Minimum x x s,u s,u x

Modified Covariance AR
Estimator

x x x(N2)

Modified Covariance Method x x x

Multiphase Clock x x x x

Multiport Selector x x x s,u s,u x(N2)

N-Sample Enable x x x

N-Sample Switch x x x s,u s,u x

NCO s s x(N2)

Normalization x x s s x

Nyquist Filter x x s,u s,u x

Octave Filter x x s,u s,u x

Offset x x s s x(N2)

Overlap-Add FFT Filter x x x(N2)

Overlap-Save FFT Filter x x x(N2)

Overwrite Values x x x s,u s,u x(N2)

Pad x x x s,u s,u x(N2)

Parametric Equalizer x x s,u s,u x

Peak Finder x x s,u s,u x(N2)

Peak-Notch Filter x x s,u s,u x

Periodogram x x x(N2)

Permute Matrix x x x s,u s,u x(N2)

Polynomial Evaluation x x x

Polynomial Stability Test x x x(N2)

7-9

7 Data Type Support

Block Double Single Boolean Base
Integer

Fixed-
Point

Code
Generation

Pseudoinverse x x x(N2)

QR Factorization x x x(N2)

QR Solver x x x(N2)

Quantizer Simulink block

Queue x x x s,u s,u x(N2)

Random Source x x x(N2)

Real Cepstrum x x x(N2)

Reciprocal Condition x x x(N2)

Repeat x x x s,u s,u x(N2)

RLS Adaptive Filter x x x

RLS Filter x x x(N2)

RMS x x x

Sample and Hold x x x s,u s,u x

Scalar Quantizer Decoder s,u s,u x

Scalar Quantizer Design x x

Scalar Quantizer Encoder x x s s x

Selector Simulink block

Short-Time FFT x x s s x(N2)

Signal From Workspace x x s,u s,u x

Signal To Workspace x x x s,u s,u x

Sine Wave x x s s x(N3)

Singular Value
Decomposition

x x x

Sort x x s,u s,u x(N2)

Spectrum Scope x x x s,u s,u x(N1)

Stack x x x s,u s,u x(N2)

7-10

Block Data Type Support Table

Block Double Single Boolean Base
Integer

Fixed-
Point

Code
Generation

Standard Deviation x x x

Submatrix x x x s,u s,u x(N2)

SVD Solver x x x(N2)

Time Scope Simulink block

Toeplitz x x x s,u s,u x

To Wave Device

x x
s 16-bit
u 8-bit

s
16-bit
word
length,
15-bit
fraction
length

x

To Wave File

x x
s 16-bit
u 8-bit

s
16-bit
word
length,
15-bit
fraction
length

x

Transpose x x x s,u s,u x

Triggered Delay Line x x x s,u s,u x(N2)

Triggered Signal From
Workspace

x x s,u s,u x

Triggered To Workspace x x x s,u s,u x

Two-Channel Analysis
Subband Filter

x x s s x(N2)

Two-Channel Synthesis
Subband Filter

x x s s x(N2)

Unbuffer x x x s,u s,u x(N2)

Uniform Decoder s,u x

7-11

7 Data Type Support

Block Double Single Boolean Base
Integer

Fixed-
Point

Code
Generation

Uniform Encoder x x x

Unwrap x x x(N2)

Upsample x x x s,u s,u x(N2)

Variable Fractional Delay x x x

Variable Integer Delay x x x s,u s,u x

Variable Selector x x x s,u s,u x(N2)

Variance x x s s x

Vector Quantizer Decoder s,u s,u x(N2)

Vector Quantizer Design x x

Vector Quantizer Encoder x x s s x(N2)

Vector Scope x x x s,u s,u x(N1)

Waterfall x x s,u s,u x(N1)

Window Function x x s s x(N2)

Yule-Walker AR Estimator x x x(N2)

Yule-Walker Method x x x

Zero Crossing x x s,u s,u x

Code Generation Notes

• N1: Ignored for code generation

• N2: Generated code relies on memcpy or memset under certain conditions

• N3: This block references absolute simulation time when configured in
continuous sample mode

• N4: Consider using the Model Discretizer to map this continuous block into
discrete equivalents that support code generation. From your model, select
Tools > Control Design > Model Discretizer

• N5: Not recommended for production code

7-12

Viewing Data Types of Signals In Models

Viewing Data Types of Signals In Models
You can enable data type labels of the signals in your model. In the model
window, from the Format menu, point to Port/Signal Displays, and select
Port Data Types. Now, the signal lines in the model have labels indicating
their data types. To see the labels, you may have to refresh the model
diagram. To do this, from the Edit menu, select Update Diagram.

Signal Lines Labeled with Their Data Types

7-13

7 Data Type Support

Boolean Support
Many Signal Processing Blockset blocks accept or output logical signals. All
such blocks support the Boolean data type at their appropriate ports:

• All block input ports that accept logical signals support the Boolean data
type.

• The default data type of all outputs that are logical signals is Boolean. You
can change this default setting and disable Boolean support as described in
“Effects of Enabling and Disabling Boolean Support” on page 7-16.

The following topics provide more information on Boolean data type support:

• “Advantages of Using the Boolean Data Type” on page 7-14

• “Lists of Blocks Supporting Boolean Inputs or Outputs” on page 7-14

• “Effects of Enabling and Disabling Boolean Support” on page 7-16

• “Steps to Disabling Boolean Support” on page 7-17

Advantages of Using the Boolean Data Type
Using the Boolean data type rather than floating-point data types speeds up
simulations and results in smaller, faster generated C code. For more about
generated code, see “Code Generation” in the Getting Started with Signal
Processing Blockset documentation.

Lists of Blocks Supporting Boolean Inputs or Outputs
The following blocks have reset ports that accept the Boolean data type:

Counter Minimum

Cumulative Product N-Sample Enable

Cumulative Sum N-Sample Switch

Delay RMS

Histogram Standard Deviation

7-14

Boolean Support

Maximum Variance

Mean

The following blocks have input ports that accept the Boolean data type:

Buffer Queue

Check Signal Attributes Repeat

Convert 1-D to 2-D Sample and Hold

Convert 2-D to 1-D Signal To Workspace

Create Diagonal Matrix Spectrum Scope

Delay Line Stack

Downsample Submatrix

Extract Triangular Matrix Time Scope

Flip Toeplitz

Frame Conversion Transpose

Identity Matrix Triggered Delay Line

Inherit Complexity Triggered To Workspace

Matrix Viewer Unbuffer

Multiport Selector Upsample

Overwrite Values Variable Integer Delay

Pad Variable Selector

Permute Matrix Vector Scope

Some or all of the output ports of the following blocks support outputs with
the Boolean data type:

Buffer Multiphase Clock

Check Signal Attributes Multiport Selector

Convert 1-D to 2-D N-Sample Enable

7-15

7 Data Type Support

Convert 2-D to 1-D Overwrite Values

Counter Pad

Create Diagonal Matrix Permute Matrix

Delay Line Polynomial Stability Test

Downsample Queue

Edge Detector Repeat

Event-Count Comparator Sample and Hold

Extract Diagonal Scalar Quantizer Encoder

Extract Triangular Matrix Stack

Flip Submatrix

Frame Conversion Toeplitz

From Wave File Transpose

Identity Matrix Triggered Delay Line

Inherit Complexity Unbuffer

LPC to/from RC Upsample

LPC to LSF/LSP Conversion Variable Integer Delay

LU Factorization Variable Selector

Effects of Enabling and Disabling Boolean Support
By default, Simulink enables Boolean support. When you leave Boolean
support enabled, all Boolean-supporting output ports always output the
Boolean data type.

In some cases, you may want to override the Simulink default and disable
Boolean support. For example, you may have a model that you created before
Boolean support existed. Leaving the Boolean support enabled in this model
may cause some blocks that used to output the double-precision data type to
output the Boolean data type. If the introduction of the Boolean data type
breaks your model, you can fix the problem by disabling Boolean support.

7-16

Boolean Support

The following table describes the effects of enabling and disabling
Boolean support. Note that when you disable Boolean support, some
Boolean-supporting output ports output double-precision data.

Type of
Boolean-Supporting
Output Port

Effect of Enabling Boolean
Support (Default)

Effect of Disabling Boolean
Support

• On a block with at least one
input port

• Did not support the Boolean
data type in versions of
Signal Processing Blockset
before Version 5.0

(For example, the Edge
Detector block)

Output is always Boolean,
regardless of the input data
type.

• When input is double
precision, the output is also
double precision.

• When input is not double
precision, the output is
Boolean.

With a corresponding block
parameter for setting output
data type to Logical or
Boolean (for example, in the
N-Sample Enable block)

Output is always Boolean,
regardless of whether you set
the output port to Logical or
Boolean.

• When set to Logical, the
output is double precision.

• When set to Boolean, the
output is Boolean.

Steps to Disabling Boolean Support
To disable Boolean data type support in a particular model, clear the
Boolean-enabling configuration parameter in the model by completing the
following:

• “Step 1: Open the Configuration Parameters Dialog Box” on page 7-18

• “Step 2: Disable the Boolean Data Type in the Advanced Tab” on page 7-18

• “Step 3: (Optional) Verify Data Types of Signals” on page 7-19

You can also set Simulink simulation preferences so that all new models you
create have Boolean support disabled. For more information, see “Working
with Simulink Preferences” in the Simulink Getting Started documentation.

7-17

7 Data Type Support

Step 1: Open the Configuration Parameters Dialog Box
In the model for which you want to enable Boolean data type support, from the
Simulation menu, select Configuration Parameters. The Configuration
Parameters dialog box opens.

The following figure illustrates the Configuration Parameters dialog box with
the appropriate settings for signal processing simulations (note the discrete
Fixed-step solver setting).

Step 2: Disable the Boolean Data Type in the Advanced Tab
Open the Configuration Parameters dialog box. In the Select pane, click
Optimization. Clear the Implement logic signals as boolean data (vs.
double) check box. Click OK.

You have now disabled Boolean support in your model; for certain cases,
output ports that support the Boolean data type will output double-precision
data rather than Boolean data, as explained in “Effects of Enabling and
Disabling Boolean Support” on page 7-16.

7-18

Boolean Support

Step 3: (Optional) Verify Data Types of Signals
Check the data types of the signals in the model by turning on the automatic
labeling of signal data types (see “Viewing Data Types of Signals In Models”
on page 7-13). Some Boolean-supporting output ports might have output
signals labeled double rather than boolean, depending on whether the inputs
to the block are double-precision (see “Effects of Enabling and Disabling
Boolean Support” on page 7-16).

7-19

7 Data Type Support

If you do not see the data type labels after turning them on, you may have to
refresh the model diagram by selecting the Edit menu in your model and then
selecting Update diagram.

7-20

8

Working with Fixed-Point
Data

Fixed-Point Signal Processing
Development (p. 8-2)

Discusses advantages of fixed-point
development in general and of
fixed-point support in Signal
Processing Blockset in particular, as
well as lists common applications
of fixed-point signal processing
development

Concepts and Terminology (p. 8-5) Defines fixed-point concepts and
terminology that are helpful to
know as you use Signal Processing
Blockset

Arithmetic Operations (p. 8-10) Describes the arithmetic operations
used by fixed-point Signal Processing
Blockset blocks, including operations
and casts that might invoke rounding
and overflow handling methods

Specifying Fixed-Point Attributes
(p. 8-20)

Teaches you how to specify
fixed-point attributes and
parameters in Signal Processing
Blockset on both the block and
system levels

Fixed-Point Filtering (p. 8-39) Discusses Signal Processing Blockset
filter blocks with fixed-point support

8 Working with Fixed-Point Data

Fixed-Point Signal Processing Development
Many of the blocks in Signal Processing Blockset have fixed-point support,
so you can design signal processing systems that use fixed-point arithmetic.
Fixed-point support in Signal Processing Blockset includes

• Signed two’s complement and unsigned fixed-point data types

• Word lengths from 2 to 128 bits in simulation

• Word lengths from 2 to the size of a long on the Real-Time Workshop C
code-generation target

• Overflow handling and rounding methods

• C code generation for deployment on a fixed-point embedded processor,
with Real Time Workshop. The generated code uses all allowed data
types supported by the embedded target, and automatically includes all
necessary shift and scaling operations

Note To take full advantage of fixed-point support in Signal Processing
Blockset, you must install Simulink Fixed Point.

• “Benefits of Fixed-Point Hardware” on page 8-2

• “Benefits of Fixed-Point Design with Signal Processing Blockset” on page
8-3

• “Fixed-Point Signal Processing Applications” on page 8-3

Benefits of Fixed-Point Hardware
There are both benefits and trade-offs to using fixed-point hardware rather
than floating-point hardware for signal processing development. Many signal
processing applications require low-power and cost-effective circuitry, which
makes fixed-point hardware a natural choice. Fixed-point hardware tends to
be simpler and smaller. As a result, these units require less power and cost
less to produce than floating-point circuitry.

Floating-point hardware is usually larger because it demands functionality
and ease of development. Floating-point hardware can accurately represent

8-2

Fixed-Point Signal Processing Development

real-world numbers, and its large dynamic range reduces the risk of overflow,
quantization errors, and the need for scaling. In contrast, the smaller dynamic
range of fixed-point hardware that allows for low-power, inexpensive units
brings the possibility of these problems. Therefore, fixed-point development
must minimize the negative effects of these factors, while exploiting the
benefits of fixed-point hardware; cost- and size-effective units, less power and
memory usage, and fast real-time processing.

Benefits of Fixed-Point Design with Signal Processing
Blockset
Simulating your fixed-point development choices before implementing them
in hardware saves time and money. The built-in fixed-point operations
provided by Signal Processing Blockset save time in simulation and allow
you to generate code automatically.

Signal Processing Blockset allows you to easily run multiple simulations
with different word length, scaling, overflow handling, and rounding
method choices to see the consequences of various fixed-point designs before
committing to hardware. The traditional risks of fixed-point development,
such as quantization errors and overflow, can be simulated and mitigated in
software before going to hardware.

Fixed-point C code generation with Signal Processing Blockset and Real-Time
Workshop produces code ready for execution on a fixed-point processor.
All the choices you make in simulation with Signal Processing Blockset in
terms of scaling, overflow handling, and rounding methods are automatically
optimized in the generated code, without necessitating time-consuming and
costly hand-optimized code. For more information on generating fixed-point
code, see Code Generation in the Simulink Fixed Point User’s Guide.

Fixed-Point Signal Processing Applications
Fixed-point support in Signal Processing Blockset facilitates development of
a wide variety of signal processing applications:

• Wireless and broadband communications

- Cellular phones

- Radio

8-3

8 Working with Fixed-Point Data

- Satellite communications

• Speech and audio processing

- Speech processing

- High-end audio processing

• Telephony

- Speech coding

- Dual tone multifrequency (DTMF)

- Echo cancellation

• Hand-held and battery-operated consumer electronics

- Digital recording devices

- Personal digital assistants (PDAs)

• Computer peripherals

• Radar and sonar

• Medical electronics

8-4

Concepts and Terminology

Concepts and Terminology
This section gives an overview of fixed-point concepts and terminology that
you might want to refer to as you take advantage of fixed-point support in
Signal Processing Blockset:

• “Fixed-Point Data Types” on page 8-5

• “Scaling” on page 8-6

• “Precision and Range” on page 8-7

The “Glossary” defines much of the vocabulary used in these sections.
For more information on these subjects, see the Simulink Fixed Point
documentation.

Fixed-Point Data Types
In digital hardware, numbers are stored in binary words. A binary word is
a fixed-length sequence of bits (1’s and 0’s). How hardware components or
software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are represented as either fixed-point or floating-point data
types. In this section, we discuss many terms and concepts relating to
fixed-point numbers, data types, and mathematics.

A fixed-point data type is characterized by the word length in bits, the position
of the binary point, and whether it is signed or unsigned. The position of
the binary point is the means by which fixed-point values are scaled and
interpreted.

For example, a binary representation of a generalized fixed-point number
(either signed or unsigned) is shown below:

��� � ��� � �� ���� �� �� ��

8-5

8 Working with Fixed-Point Data

where

• bi is the ith binary digit.

• wl is the word length in bits.

• bwl–1 is the location of the most significant, or highest, bit (MSB).

• b0 is the location of the least significant, or lowest, bit (LSB).

• The binary point is shown four places to the left of the LSB. In this
example, therefore, the number is said to have four fractional bits, or a
fraction length of four.

Fixed-point data types can be either signed or unsigned. Signed binary
fixed-point numbers are typically represented in one of three ways:

• Sign/magnitude

• One’s complement

• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and is used by Signal Processing Blockset. See “Two’s Complement”
on page 8-11 for more information.

Scaling
Fixed-point numbers can be encoded according to the scheme

real world value slope integer bias- ()= × +

where the slope can be expressed as

slope slope adjustment exponent= × 2

The integer is sometimes called the stored integer. This is the raw binary
number, in which the binary point assumed to be at the far right of the word.
In Signal Processing Blockset, the negative of the exponent is often referred
to as the fraction length.

8-6

Concepts and Terminology

The slope and bias together represent the scaling of the fixed-point number.
In a number with zero bias, only the slope affects the scaling. A fixed-point
number that is only scaled by binary point position is equivalent to a number
in the Simulink Fixed Point [Slope Bias] representation that has a bias equal
to zero and a slope adjustment equal to one. This is referred to as binary
point-only scaling or power-of-two scaling:

real world value integerexponent- = ×2

or

real world value integerfraction length- = ×−2

In Signal Processing Blockset, you can define a fixed-point data type and
scaling for the output or the parameters of many blocks by specifying the
word length and fraction length of the quantity. The word length and
fraction length define the whole of the data type and scaling information
for binary-point only signals.

All Signal Processing Blockset blocks that support fixed-point data types
support signals with binary-point only scaling. Many fixed-point Signal
Processing Blockset blocks that do not perform arithmetic operations but
merely rearrange data, such as Delay and Matrix Transpose, also support
signals with [Slope Bias] scaling.

Precision and Range
You must pay attention to the precision and range of the fixed-point data
types and scalings you choose for the blocks in your simulations, in order to
know whether rounding methods will be invoked or if overflows will occur.

Range
The range is the span of numbers that a fixed-point data type and scaling
can represent. The range of representable numbers for a two’s complement
fixed-point number of word length wl, scaling S, and bias B is illustrated
below:

8-7

8 Working with Fixed-Point Data

�
��

��������	�
���� ��������	�
����

� ���� � �� � � ���� � �� ��

For both signed and unsigned fixed-point numbers of any data type, the
number of different bit patterns is 2wl.

For example, in two’s complement, negative numbers must be represented
as well as zero, so the maximum value is 2wl–1. Because there is only one
representation for zero, there are an unequal number of positive and negative
numbers. This means there is a representation for -2wl–1 but not for 2wl –1:

�

��������	�
���� ��������	�
����

��	�����	�	�	���	����	�	��

� ��� � ����

Overflow Handling. Because a fixed-point data type represents numbers
within a finite range, overflows can occur if the result of an operation is larger
or smaller than the numbers in that range.

Signal Processing Blockset does not allow you to add guard bits to a data type
on-the-fly in order to avoid overflows. Any guard bits must be allocated upon
model initialization. However, Signal Processing Blockset does allow you to
either saturate or wrap overflows. Saturation represents positive overflows as
the largest positive number in the range being used, and negative overflows
as the largest negative number in the range being used. Wrapping uses
modulo arithmetic to cast an overflow back into the representable range of the
data type. See “Modulo Arithmetic” on page 8-10 for more information.

Precision
The precision of a fixed-point number is the difference between successive
values representable by its data type and scaling, which is equal to the value
of its least significant bit. The value of the least significant bit, and therefore
the precision of the number, is determined by the number of fractional bits.

8-8

Concepts and Terminology

A fixed-point value can be represented to within half of the precision of its
data type and scaling.

For example, a fixed-point representation with four bits to the right of the
binary point has a precision of 2-4 or 0.0625, which is the value of its least
significant bit. Any number within the range of this data type and scaling can
be represented to within (2-4)/2 or 0.03125, which is half the precision. This is
an example of representing a number with finite precision.

Rounding Methods. One of the limitations of representing numbers with
finite precision is that not every number in the available range can be
represented exactly. When the result of a fixed-point calculation is a number
that cannot be represented exactly by the data type and scaling being used,
precision is lost. A rounding method must be used to cast the result to a
representable number. Signal Processing Blockset currently supports Floor
and Nearest rounding methods.

Floor, which is equivalent to truncation, rounds the output of a calculation to
the closest representable number in the direction of negative infinity.

Nearest rounds the output of a calculation to the closest representable
number, with the exact midpoint rounded to the closest representable number
in the direction of positive infinity.

8-9

8 Working with Fixed-Point Data

Arithmetic Operations
The following sections describe the arithmetic operations used by fixed-point
Signal Processing Blockset blocks:

• “Modulo Arithmetic” on page 8-10

• “Two’s Complement” on page 8-11

• “Addition and Subtraction” on page 8-12

• “Multiplication” on page 8-13

• “Casts” on page 8-15

These sections will help you understand what data type and scaling choices
result in overflows or a loss of precision.

Modulo Arithmetic
Binary math is based on modulo arithmetic. Modulo arithmetic uses only
a finite set of numbers, wrapping the results of any calculations that fall
outside the given set back into the set.

8-10

Arithmetic Operations

For example, the common everyday clock uses modulo 12 arithmetic. Numbers
in this system can only be 1 through 12. Therefore, in the “clock” system, 9
plus 9 equals 6. This can be more easily visualized as a number circle:

��
�

�

�

�

�
�

�

�

�

��

��
��

�

�

�

�

�
�

�

�

�

��

��

�	 	��
�	�	���	

 	�!
���	�

Similarly, binary math can only use the numbers 0 and 1, and any arithmetic
results that fall outside this range are wrapped “around the circle” to either 0
or 1.

Two’s Complement
Two’s complement is a way to interpret a binary number. In two’s complement,
positive numbers always start with a 0 and negative numbers always start
with a 1. If the leading bit of a two’s complement number is 0, the value
is obtained by calculating the standard binary value of the number. If the
leading bit of a two’s complement number is 1, the value is obtained by
assuming that the leftmost bit is negative, and then calculating the binary
value of the number. For example,

01 0 2 1

11 2 2 2 1 1

0

1 0

= + =

= − + = − + = −

()

(() ()) ()

8-11

8 Working with Fixed-Point Data

To compute the negative of a binary number using two’s complement,

1 Take the one’s complement, or “flip the bits.”

2 Add a 1 using binary math.

3 Discard any bits carried beyond the original word length.

For example, consider taking the negative of 11010 (-6). First, take the one’s
complement of the number, or flip the bits:

11010 00101→

Next, add a 1, wrapping all numbers to 0 or 1:

00101
1

00110 6
+

()

Addition and Subtraction
The addition of fixed-point numbers requires that the binary points of the
addends be aligned. The addition is then performed using binary arithmetic
so that no number other than 0 or 1 is used.

For example, consider the addition of 010010.1 (18.5) with 0110.110 (6.75):

010010 1
0110 110

011001 010

18 5
6 75

25 25

.

.

.

(.)
(.)

(.)
+

Fixed-point subtraction is equivalent to adding while using the two’s
complement value for any negative values. In subtraction, the addends
must be sign extended to match each other’s length. For example, consider
subtracting 0110.110 (6.75) from 010010.1 (18.5):

8-12

Arithmetic Operations

Most fixed-point Signal Processing Blockset blocks that perform addition cast
the adder inputs to an accumulator data type before performing the addition.
Therefore, no further shifting is necessary during the addition to line up the
binary points. See “Casts” on page 8-15 for more information.

Multiplication
The multiplication of two’s complement fixed-point numbers is directly
analogous to regular decimal multiplication, with the exception that the
intermediate results must be sign extended so that their left sides align
before you add them together.

For example, consider the multiplication of 10.11 (-1.25) with 011 (3):

Multiplication Data Types
The following diagrams show the data types used for fixed-point multiplication
in Signal Processing Blockset. The diagrams illustrate the differences
between the data types used for real-real, complex-real, and complex-complex
multiplication. See individual reference pages in the Block Reference to
determine whether a particular block accepts complex fixed-point inputs.

8-13

8 Working with Fixed-Point Data

In most cases, you can set the data types used during multiplication in the
block mask. See “Accumulator Parameters” on page 8-24, “Product Output
Parameters” on page 8-24, and “Output Parameters” on page 8-25. These data
types are defined in “Casts” on page 8-15.

Note The following diagrams show the use of fixed-point data types in
multiplication in Signal Processing Blockset. They do not represent actual
subsystems used by Signal Processing Blockset to perform multiplication.

Real-Real Multiplication. The following diagram shows the data types used
in the multiplication of two real numbers in Signal Processing Blockset. The
output of this multiplication is in the product output data type:

"��
�
����	�#�� $��
%�	�
��
�

����	�#��

�

%

�%

Real-Complex Multiplication. The following diagram shows the data
types used in the multiplication of a real and a complex fixed-point number
in Signal Processing Blockset. Real-complex and complex-real multiplication
are equivalent. The output of this multiplication is in the product output
data type:

"��
�
����	�#��

"��
�
����	�#�� %

�

�
�%

��

$��
%�	�
��
�
����	�#��

�%&���

%

�
�

8-14

Arithmetic Operations

Complex-Complex Multiplication. The following diagram shows the
multiplication of two complex fixed-point numbers in Signal Processing
Blockset. Note that the output of the multiplication is in the accumulator
data type:

"��
�
����	�#�� $��
%�	�
��
�

����	�#��

'%%
�
����
����	�#��

(�%)��*
&

(��&�%*�

�%)��

"��
�
����	�#��

$��
%�	�
��
�
����	�#��

��&�%

�
�

%
�

�
%

�
�

�
�

�
%

�%

��

��

�%

Casts
Many fixed-point Signal Processing Blockset blocks that perform arithmetic
operations allow you to specify the accumulator, intermediate product, and
product output data types, as applicable, as well as the output data type of the
block. This section gives an overview of the casts to these data types, so that
you can tell if the data types you select will invoke sign extension, padding
with zeros, rounding, and/or overflow.

Casts to the Accumulator Data Type
For most fixed-point Signal Processing Blockset blocks that perform addition,
the addends are first cast to an accumulator data type. Most of the time, you
can specify the accumulator data type on the block mask. See “Accumulator
Parameters” on page 8-24. Since the addends are both cast to the same
accumulator data type before they are added together, no extra shift is
necessary to insure that their binary points align. The result of the addition
remains in the accumulator data type, with the possibility of overflow.

8-15

8 Working with Fixed-Point Data

Casts to the Intermediate Product or Product Output Data Type
For Signal Processing Blockset blocks that perform multiplication, the output
of the multiplier is placed into a product output data type. Blocks that then
feed the product output back into the multiplier might first cast it to an
intermediate product data type. Most of the time, you can specify these data
types on the block mask. See “Intermediate Product Parameters” on page 8-23
and “Product Output Parameters” on page 8-24.

Casts to the Output Data Type
Many fixed-point Signal Processing Blockset blocks allow you to specify the
data type and scaling of the block output on the mask. Remember that Signal
Processing Blockset does not allow mixed types on the input and output
ports of its blocks. Therefore, if you would like to specify a fixed-point output
data type and scaling for a Signal Processing Blockset block that supports
fixed-point data types, you must feed the input port of that block with a
fixed-point signal. The final cast made by a fixed-point Signal Processing
Blockset block is to the output data type of the block.

Note that although you can not mix fixed-point and floating-point signals on
the input and output ports of Signal Processing Blockset blocks, you can have
fixed-point signals with different word and fraction lengths on the ports of
blocks that support fixed-point signals.

Casting Examples
It is important to keep in mind the ramifications of each cast when selecting
these intermediate data types, as well as any other intermediate fixed-point
data types that are allowed by a particular block. Depending upon the data
types you select, overflow and/or rounding might occur. The following two
examples demonstrate cases where overflow and rounding can occur.

8-16

Arithmetic Operations

Casting from a Shorter Data Type to a Longer Data Type. Consider
the cast of a nonzero number, represented by a four-bit data type with two
fractional bits, to an eight-bit data type with seven fractional bits:

+,��	���	-��	�,�	��
%�	����
�#��	.-����	�--/	�,�	,��,	���	0��,
�,�	�,�-�	
� 	1��-��0	���,�	�%%

+,�	��
��	0���	���
���	�	0��

+,���	����	�-	�,�	�����������
����	�#��	��	������	0��,
�2�	�	�2�

��
%�

�����������

+,�	��
%�	����	�
��	��	�,�-���	
�	��	���%,	�,�
����#	�����	��������	�-	�,�	�����������	����	�#��

As the diagram shows, the source bits are shifted up so that the binary point
matches the destination binary point position. The highest source bit does
not fit, so overflow might occur and the result can saturate or wrap. The
empty bits at the low end of the destination data type are padded with either
0’s or 1’s:

• If overflow does not occur, the empty bits are padded with 0’s.

• If wrapping occurs, the empty bits are padded with 0’s.

• If saturation occurs,

- The empty bits of a positive number are padded with 1’s.

- The empty bits of a negative number are padded with 0’s.

You can see that even with a cast from a shorter data type to a longer data
type, overflow might still occur. This can happen when the integer length of
the source data type (in this case two) is longer than the integer length of
the destination data type (in this case one). Similarly, rounding might be

8-17

8 Working with Fixed-Point Data

necessary even when casting from a shorter data type to a longer data type, if
the destination data type and scaling has fewer fractional bits than the source.

Casting from a Longer Data Type to a Shorter Data Type. Consider the
cast of a nonzero number, represented by an eight-bit data type with seven
fractional bits, to a four-bit data type with two fractional bits:

+,��	��	��	���
�	-�	�,��	���
-��	�,�	��
%�3	��	�,�	��
��
�
��	��	����)�4������	��	-���
�,�	�����������	����	�#��

+,���	����	-��	�,�	��
%�
��	���	-��	����	�,�	�����������
����	�#�� 	+,�	��
��	��	�
����

��
%�

�����������

+,�	��
%�	����	�
��	��	�,�-���	��0�	��	���%,	�,�
����#	�����	��������	�-	�,�	�����������	����	�#��

As the diagram shows, the source bits are shifted down so that the binary
point matches the destination binary point position. There is no value for the
highest bit from the source, so the result is sign extended to fill the integer
portion of the destination data type. The bottom five bits of the source do not
fit into the fraction length of the destination. Therefore, precision can be
lost as the result is rounded.

In this case, even though the cast is from a longer data type to a shorter data
type, all the integer bits are maintained. Conversely, full precision can be
maintained even if you cast to a shorter data type, as long as the fraction
length of the destination data type is the same length or longer than the
fraction length of the source data type. In that case, however, bits are lost
from the high end of the result and overflow might occur.

8-18

Arithmetic Operations

The worst case occurs when both the integer length and the fraction length of
the destination data type are shorter than those of the source data type and
scaling. In that case, both overflow and a loss of precision can occur.

8-19

8 Working with Fixed-Point Data

Specifying Fixed-Point Attributes
The following sections describe how to set and monitor fixed-point settings
for Signal Processing Blockset blocks both on a block-by-block and on a
system-wide basis:

• “Setting Block Parameters” on page 8-20

• “Inherit via Internal Rule” on page 8-26

• “Specifying System-Level Settings” on page 8-37

Setting Block Parameters
Blocks in Signal Processing Blockset that have fixed-point support often
allow you to specify fixed-point characteristics through block parameters. In
many cases, such as with the accumulator and product output parameters,
specifying these parameters enables you to simulate your target hardware
more closely.

Note The fixed-point settings discussed in this section are ignored for
floating-point signals.

8-20

Specifying Fixed-Point Attributes

Most fixed-point parameters for Signal Processing Blockset blocks appear
when the Fixed-point tab is selected, for example on the Matrix Product
block dialog below.

Many of the Signal Processing Blockset blocks with fixed-point capabilities
share common parameters, though each block might have a different subset
of these fixed-point parameters. The following parameters are discussed in
this section:

• “Rounding Mode Parameter” on page 8-22

• “Overflow Mode Parameter” on page 8-22

• “Intermediate Product Parameters” on page 8-23

8-21

8 Working with Fixed-Point Data

• “Product Output Parameters” on page 8-24

• “Accumulator Parameters” on page 8-24

• “Output Parameters” on page 8-25

For a discussion of all the parameters of a specific Signal Processing Blockset
block, refer to the block’s reference page in the Block Reference.

Remember that Signal Processing Blockset does not allow mixed floating-point
and fixed-point types on the input and output ports of its blocks. Therefore,
the parameters discussed in this section only take effect if you feed the input
port of a block with a fixed-point signal.

Rounding Mode Parameter
Use this parameter to specify the rounding method to be used when the result
of a fixed-point calculation does not map exactly to a number representable by
the data type and scaling that stores the result:

• Floor, which is equivalent to truncation, rounds the result of a calculation
to the closest representable number in the direction of negative infinity.

• Nearest rounds the result of a calculation to the closest representable
number, with the exact midpoint rounded to the closest representable
number in the direction of positive infinity.

Overflow Mode Parameter
Use this parameter to specify the method to be used if the magnitude of a
fixed-point calculation result does not fit into the range of the data type and
scaling that stores the result:

• Saturate represents positive overflows as the largest positive number
in the range being used, and negative overflows as the largest negative
number in the range being used.

• Wrap uses modulo arithmetic to cast an overflow back into the representable
range of the data type. See “Modulo Arithmetic” on page 8-10 for more
information.

8-22

Specifying Fixed-Point Attributes

Intermediate Product Parameters
Fixed-point Signal Processing Blockset blocks that feed multiplication results
back to the input of the multiplier usually allow you to specify the data type
and scaling of the intermediate product:

See the reference page of a specific block in the Block Reference to learn about
the intermediate product data type for a specific block.

Use the Intermediate product—Mode parameter to specify how you would
like to designate the intermediate product word and fraction lengths:

• When you select Same as input, these characteristics match those of the
first input to the block.

• When you select Binary point scaling, you are able to enter the word
length and the fraction length of the intermediate product, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the intermediate product. The bias of all
signals in Signal Processing Blockset is zero.

8-23

8 Working with Fixed-Point Data

Product Output Parameters
Fixed-point Signal Processing Blockset blocks that must hold multiplication
results for further calculation usually allow you to specify the data type and
scaling of the product output:

See the reference page of a specific block in the Block Reference to
learn about the product output data type for a specific block. Note that
for complex-complex multiplication, the multiplication result is in the
accumulator data type. See “Multiplication Data Types” on page 8-13 for
more information on complex fixed-point multiplication in Signal Processing
Blockset.

Use the Product output—Mode parameter to specify how you would like to
designate the product output word and fraction lengths:

• When you select Inherit via internal rule, the accumulator output
word and fraction lengths are automatically calculated for you. Refer to
“Inherit via Internal Rule” on page 8-26 for more information.

• When you select Same as input, these characteristics match those of the
first input to the block.

• When you select Binary point scaling, you are able to enter the word
length and the fraction length of the product output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the product output. The bias of all signals
in Signal Processing Blockset is zero.

Accumulator Parameters
Fixed-point Signal Processing Blockset blocks that must hold summation
results for further calculation usually allow you to specify the data type and
scaling of the accumulator. Most such blocks cast to the accumulator data
type prior to summation:

8-24

Specifying Fixed-Point Attributes

See the reference page of a specific block in the Block Reference for details
on the accumulator data type of a specific block.

Use the Accumulator—Mode parameter to specify how you would like to
designate the accumulator word and fraction lengths:

• When you select Inherit via internal rule, the accumulator output
word and fraction lengths are automatically calculated for you. Refer to
“Inherit via Internal Rule” on page 8-26 for more information.

• When you select Same as product output, these characteristics match
those of the product output.

• When you select Same as input, these characteristics match those of the
first input to the block.

• When you select Binary point scaling, you are able to enter the word
length and the fraction length of the accumulator, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the accumulator. The bias of all signals in
Signal Processing Blockset is zero.

Output Parameters
In many cases you can specify the output data type and scaling of fixed-point
Signal Processing Blockset blocks.

Use the Output—Mode parameter to choose how you specify the word length
and fraction length of the output of the block:

8-25

8 Working with Fixed-Point Data

• When you select Same as accumulator, these characteristics match those
of the accumulator.

• When you select Same as product output, these characteristics match
those of the product output.

• When you select Same as input, these characteristics match those of the
first input to the block.

• When you select Binary point scaling, you are able to enter the word
length and the fraction length of the output, in bits.

• When you select Slope and bias scaling, you are able to enter the word
length, in bits, and the slope of the output. The bias of all signals in Signal
Processing Blockset is zero.

Inherit via Internal Rule
Selecting appropriate word lengths and scalings for the fixed-point
parameters in your model can be challenging. To aid you, an Inherit via
internal rule choice is often available for fixed-point block parameters such
as Accumulator and Product output. The following sections describe how
the word and fraction lengths are selected for you when you choose Inherit
via internal rule for a fixed-point block parameter in Signal Processing
Blockset:

• “Internal Rule for Accumulator Data Types” on page 8-27

• “Internal Rule for Product Data Types” on page 8-27

• “Internal Rule for Output Data Types” on page 8-28

• “The Effect of the Hardware Implementation Pane on the Internal Rule”
on page 8-28

• “Internal Rule Examples” on page 8-30

Note In the equations in the following sections, WL = word length and FL =
fraction length.

8-26

Specifying Fixed-Point Attributes

Internal Rule for Accumulator Data Types
The internal rule for accumulator data types first calculates the ideal,
full-precision result. Where N is the number of addends:

WL WL Nideal accumulator input to accumulator= + −floor(log ()2 1 ++ 1

FL FLideal accumulator input to accumulator=

For example, consider summing all the elements of a vector of length 6 and
data type sfix10_En8. The ideal, full-precision result has a word length of
13 and a fraction length of 8.

The accumulator can be real or complex. The preceding equations are used for
both the real and imaginary parts of the accumulator. For any calculation,
after the full-precision result is calculated, the final word and fraction lengths
set by the internal rule are affected by your particular hardware. See “The
Effect of the Hardware Implementation Pane on the Internal Rule” on page
8-28 for more information.

Internal Rule for Product Data Types
The internal rule for product data types first calculates the ideal, full-precision
result:

WL WL WLideal product input 1 input 2= +

FL FL FLideal product input 1 input 2= +

For example, multiplying together the elements of a real vector of length 2
and data type sfix10_En8. The ideal, full-precision result has a word length of
20 and a fraction length of 16.

For real-complex multiplication, the ideal word length and fraction length is
used for both the complex and real portion of the result. For complex-complex
multiplication, the ideal word length and fraction length is used for the partial
products, and the internal rule for accumulator data types described above
is used for the final sums. For any calculation, after the full-precision result
is calculated, the final word and fraction lengths set by the internal rule

8-27

8 Working with Fixed-Point Data

are affected by your particular hardware. See “The Effect of the Hardware
Implementation Pane on the Internal Rule” on page 8-28 for more information.

Internal Rule for Output Data Types
A few Signal Processing Blockset blocks have an Inherit via internal
rule choice available for the block output. The internal rule used in these
cases is block-specific, and the equations are listed in the block reference page.
For examples, refer to the FFT, IFFT, DCT, and IDCT reference pages.

As with accumulator and product data types, the final output word and
fraction lengths set by the internal rule are affected by your particular
hardware, as described in “The Effect of the Hardware Implementation Pane
on the Internal Rule” on page 8-28.

The Effect of the Hardware Implementation Pane on the
Internal Rule
The internal rule selects word lengths and fraction lengths that are
appropriate for your hardware. To get the best results using the internal
rule, you must specify the type of hardware you are using on the Hardware
Implementation pane of the Configuration Parameters dialog box. You can
open this dialog box from the Simulation menu in your model.

8-28

Specifying Fixed-Point Attributes

ASIC/FPGA. On an ASIC/FPGA target, the ideal, full-precision word length
and fraction length calculated by the internal rule are used. If the calculated
ideal word length is larger than the largest allowed word length, you receive
an error. The largest word length allowed for Simulink and Signal Processing
Blockset is 128 bits.

Other targets. For all targets other than ASIC/FPGA, the ideal,
full-precision word length calculated by the internal rule is rounded up to the
next available word length of the target. The calculated ideal fraction length
is used, keeping the least-significant bits.

8-29

8 Working with Fixed-Point Data

If the calculated ideal word length for a product data type is larger than the
largest word length on the target, you receive an error. If the calculated ideal
word length for an accumulator or output data type is larger than the largest
word length on the target, the largest target word length is used.

Internal Rule Examples
The following sections show examples of how the internal rule interacts with
the Hardware Implementation pane to calculate accumulator data types
and product data types.

Accumulator Data Types. Consider the following model.

In the Matrix Sum blocks, the Accumulator parameter is set to Inherit via
internal rule, and the Output parameter is set to Same as accumulator.
Therefore, you can see the accumulator data type calculated by the internal
rule on the output signal in the model.

8-30

Specifying Fixed-Point Attributes

In the preceding model, the Device type parameter in the Hardware
Implementation pane of the Configuration Parameters dialog box is set to
ASIC/FPGA. Therefore, the accumulator data type used by the internal rule is
the ideal, full-precision result.

Calculate the full-precision word length for each of the Matrix Sum blocks
in the model:

WL WL numbideal accumulator input to accumulator= + floor(log (2 eer of accumulations

WLideal accumulator

)

floor(log ()2

+

= +

1

9 1)) +
= + + =

=

1
9 0 1 10

1

WL

WL WL

ideal accumulator

ideal accumulator inpuut to accumulator number of accumulations

W
1 1+ +floor(log ()2

LL

WL
ideal accumulator

ideal accumulato

1 16 1 1= + +floor(log ())2

rr

ideal accumulator input to accumulatorWL WL

1

2 2

16 0 1 17= + + =

= + ffloor(log ()2 number of accumulations

WLideal accumulator

+ 1

2 == + +
= + + =

127 1 1
127 0 1 1282

floor(log ())2

WLideal accumulator

Calculate the full-precision fraction length, which is the same for each Matrix
Sum block in this example:

FL FL

FL
ideal accumulator input to accumulator

ideal accumula

=

ttor = 4

Now change the Device type parameter in the Hardware Implementation
pane of the Configuration Parameters dialog box to 32 bit Generic
Embedded Processor, as shown in the following figure.

8-31

8 Working with Fixed-Point Data

As you can see in the dialog box, this device has 8-, 16-, and 32-bit word
lengths available. Therefore, the ideal word lengths of 10, 17, and 128 bits
calculated by the internal rule cannot be used. Instead, the internal rule uses
the next largest available word length in each case You can see this if you
rerun the model, as shown in the following figure.

8-32

Specifying Fixed-Point Attributes

8-33

8 Working with Fixed-Point Data

Product Data Types. Consider the following model.

In the Matrix Scaling blocks, the Product Output parameter is set to
Inherit via internal rule, and the Output parameter is set to Same
as product output. Therefore, you can see the product output data type
calculated by the internal rule on the output signal in the model. The setting
of the Accumulator parameter does not matter because this example uses
real values.

For the preceding model, the Device type parameter in the Hardware
Implementation pane of the Configuration Parameters dialog box is set
to ASIC/FPGA. Therefore, the product data type used by the internal rule is
the ideal, full-precision result.

Calculate the full-precision word length for each of the Matrix Scaling blocks
in the model:

8-34

Specifying Fixed-Point Attributes

WL WL WL

WL

W

ideal product input a input b

ideal product

= +

= + =7 5 12

LL WL WL

WL
ideal product input a input b

ideal product

1

1 16 15

= +

= + == 31

Calculate the full-precision fraction length, which is the same for each Matrix
Scaling block in this example:

FL FL FL

FL
ideal product input a input b

ideal product

= +

= + =4 2 6

Now change the Device type parameter in the Hardware Implementation
pane of the Configuration Parameters dialog box to 32 bit Generic
Embedded Processor, as shown in the following figure.

8-35

8 Working with Fixed-Point Data

As you can see in the dialog box, this device has 8-, 16-, and 32-bit word
lengths available. Therefore, the ideal word lengths of 12 and 17 bits
calculated by the internal rule cannot be used. Instead, the internal rule uses
the next largest available word length in each case. You can see this if you
rerun the model, as shown in the following figure.

8-36

Specifying Fixed-Point Attributes

Specifying System-Level Settings
You can monitor and control fixed-point settings for Signal Processing
Blockset blocks at a system or subsystem level with the Fixed-Point Tool. For
additional information on these subjects, see

• The fxptdlg reference page — A reference page on the Fixed-Point Tool in
the Simulink documentation

• “Tutorial: Feedback Controller Simulation” — A tutorial that highlights
the use of the Fixed-Point Tool in the Simulink Fixed Point documentation

Logging
The Fixed-Point Tool logs overflows, saturations, and simulation minimums
and maximums for fixed-point Signal Processing Blockset blocks. The
Fixed-Point Tool does not log overflows and saturations when the Data
overflow line in the Diagnostics > Data Integrity pane of the Configuration
Parameters dialog box is set to None.

8-37

8 Working with Fixed-Point Data

Autoscaling
You can use the Fixed-Point Tool autoscaling feature to set the scaling for
Signal Processing Blockset fixed-point data types.

Data type override
Signal Processing Blockset blocks obey the Use local settings, True
doubles, True singles, and Force off modes of the Data type override
parameter in the Fixed-Point Tool. The Scaled doubles mode is also
supported for Signal Processing Blockset source and byte-shuffling blocks
that support [Slope Bias] signals, but not for arithmetic fixed-point Signal
Processing Blockset blocks such as FFT or Digital Filter.

8-38

Fixed-Point Filtering

Fixed-Point Filtering
The following Signal Processing Blockset blocks enable you to design and/or
realize a variety of fixed-point filters:

• CIC Decimation

• CIC Interpolation

• Digital Filter

• Filter Realization Wizard

• FIR Decimation

• FIR Interpolation

• Two-Channel Analysis Subband Filter

• Two-Channel Synthesis Subband Filter

Filter Implementation Blocks
The FIR Decimation, FIR Interpolation, Two-Channel Analysis Subband
Filter, Two-Channel Synthesis Subband Filter, and Digital Filter blocks are
all implementation blocks. They allow you to implement filters for which you
already know the filter coefficients. The first four blocks each implement
their respective filter type, while the Digital Filter block can create a variety
of filter structures. All filter structures supported by the Digital Filter block
support fixed-point signals.

For more information on these filter implementation blocks, see their
reference pages in the Block Reference.

Filter Design and Implementation Blocks
The Filter Realization Wizard block invokes part of the Filter Design and
Analysis Tool from Signal Processing Toolbox. This block allows you both
to design new filters and to implement filters for which you already know
the coefficients. In its implementation stage, the Filter Realization Wizard
creates a filter realization using Sum, Gain, and Delay blocks. You can use
this block to design and/or implement numerous types of fixed-point and
floating-point single-channel filters. See Chapter 3, “Filters” and the Filter

8-39

8 Working with Fixed-Point Data

Realization Wizard reference page in the Block Reference more information
about this block.

The CIC Decimation and CIC Interpolation blocks allow you to design and
implement Cascaded Integrator-Comb filters. See their block reference pages
for more information.

8-40

Index

IndexA
accumulator

fixed-point parameters 8-24
adaptive filters 3-53

creating 3-55
customizing 3-60

add
samples 2-25

algebraic loop errors 2-59
algorithmic delay 2-52

adjustable 2-55
and initial conditions 2-55
basic 2-55
excess 2-58
relation to latency 2-58
zero 2-52

analog filter designs 3-51
See also filter designs

angular frequency 1-4
See also periods

arithmetic operations
fixed-point 8-10

arrays
importing 1-59

attenuation
stopband 3-51

auto-promoting rates 1-10
avoiding unintended rate conversion 2-19

B
band configurations 3-51
bandpass filter designs

analog, available parameters 3-51
bandstop filter designs

analog, available parameters 3-51
basic

statistical operations 6-2
basic algorithmic delay 2-55
benefits

frame-based processing 2-51
block parameters

fixed-point 8-20
block rate types 2-59
blocks

multirate 2-59
single-rate 2-59

Buffer overlap parameter
negative values for 2-38

buffering 2-25
altering the sample period of the signal 2-31
altering the signal 2-27
causing unintentional rate conversions 2-25
frame-based signals into other frame-based

signals 2-42
internal 2-37
preserving the sample period of the

signal 2-28
sample-based signals into frame-based

signals 2-35
sample-based signals into frame-based

signals with overlap 2-38
butter function 3-52
Butterworth filter designs

analog 3-51
band configurations for 3-51

C
casts

fixed-point 8-15
changing

frame sizes 2-16
the frame size of a signal 2-28

channels
of a sample-based signal 1-13

cheby1 function 3-52
cheby2 function 3-52
Chebyshev type I filter designs

analog 3-51

Index-1

Index

band configurations for 3-51
Chebyshev type II filter designs

analog 3-51
band configurations for 3-51

choosing
filter design blocks 3-20

code generation
fixed-point 8-3
generic real-time (GRT) 2-52

combining
frame-based signals 1-39
multichannel sample-based signals 1-36
single-channel sample-based signals 1-33

complex multiplication
fixed-point 8-13

computational delay 2-50
reducing 2-51

concatenating
frame-based signals 1-39
multichannel sample-based signals 1-36
single-channel sample-based signals 1-33

concepts
frame rate 2-2
sample rate 2-2

configuring
vector quantization model 5-14

continuous-time
discretizing signals 1-11
signals 1-11
source blocks 1-11

conventions
time and frequency 1-4

converting 2-14
frame rates 2-14
frame-based signals into other frame-based

signals 2-42
sample-based signals into frame-based

signals 2-35
sample-based signals into frame-based

signals with overlap 2-38

See also rate conversion
creating

1-D vector signal 1-21
adaptive filters 3-55
fixed-point filters 3-33
frame-based signals 1-26
multichannel frame-based signals 1-39
multichannel sample-based signals 1-33
sample-based signals 1-19
scalar quantizers 5-6
vector quantizers 5-12

customizing
adaptive filters 3-60

D
data types

labeling signals with 7-13
deconstructing

multichannel frame-based signals 1-49
multichannel frame-based signals into

individual signals 1-49
multichannel sample-based signals 1-43
multichannel sample-based signals into

individual signals 1-43
multichannel sample-based signals into

other multichannel signals 1-45
delay

algorithmic 2-52
computational 2-50
rebuffering 2-45
relation to latency 2-58

delete
samples 2-25

demos
LPC Analysis and Synthesis of Speech 5-3
multirate filtering 3-74

designing
adaptive filters 3-55
fixed-point filters 3-33

Index-2

Index

scalar quantizers 5-6
vector quantizers 5-12

Digital Filter block
filtering noise with 3-5

Digital Filter Design block
filtering noise with 3-26

digital frequency 1-4
defined 1-4
See also periods

discrete-time signals 1-4
characteristics 1-4
defined 1-3
terminology 1-4
See also signals

discretizing a continuous-time signal 1-11
displaying

frequency-domain data 4-9
line widths 2-14
time-domain data 4-2

downsampling 2-14
See also rate conversion

E
ellip function 3-52
elliptic filter designs

analog 3-51
band configurations for 3-51

errors
algebraic loop 2-59
due to continuous-time input to a

discrete-time block 1-11
sample-rate mismatch 1-7

estimation
power spectrum 6-6

examples
latency 2-60
multirate filtering 3-74

exporting
frame-based signals 1-71

sample-based signals 1-63

F
factoring matrices 6-8
FFT block

using 4-5
FFT length parameter 2-22
filter band configurations 3-51
filter design blocks

choosing 3-20
filter designs

available parameters 3-51
butter function 3-52
Butterworth 3-51
cheby1 function 3-52
cheby2 function 3-52
Chebyshev type I 3-51
Chebyshev type II 3-51
continuous-time 3-51
ellip function 3-52
elliptic 3-51
passband ripple 3-51
stopband attenuation 3-51

filters
adaptive 3-53
creating a highpass filter 3-24
creating a lowpass filter 3-22
Filter Realization Wizard 3-32
filtering noise with Digital Filter blocks 3-5
filtering noise with Digital Filter Design

blocks 3-26
fixed-point 8-39
implementing a highpass filter 3-4
implementing a lowpass filter 3-3
multirate 3-66

fixed-point attributes, specification
at the block level 8-20
at the system level 8-37

fixed-point block parameters

Index-3

Index

setting 8-20
fixed-point code generation 8-3
fixed-point data types 8-5

accumulator parameters 8-24
addition 8-12
arithmetic operations 8-10
attributes 8-20
casts 8-15
complex multiplication 8-13
concepts 8-5
filters 8-39
intermediate product parameters 8-23
logging 8-37
modular arithmetic 8-10
multiplication 8-13
output parameters 8-25
overflow handling 8-7
overflow parameter 8-22
precision 8-7
range 8-7
rounding 8-8
rounding parameter 8-22
saturation 8-7
scaling 8-6
subtraction 8-12
terminology 8-5
two’s complement 8-11
wrapping 8-7

fixed-point development
benefits 8-2

fixed-point DSP applications 8-3
fixed-point filters

designing and implementing 3-33
Fixed-Point Tool 8-37
fixed-step solvers 1-7
frame periods 2-12

altered by unbuffering 2-46
constant 2-13
converting 2-12
multiple 2-14

related to sample period and frame size 2-3
Simulink Probe block 2-6
See also rate conversion

frame rates 1-10
auto-promoting 1-10
color coding 2-9
concepts 2-2
inspecting 2-9
See also frame periods

frame rebuffering
blocks for 2-25

frame sizes 2-12
changing 2-28
constant 2-13
converting 2-12
converting by rebuffering 2-12
direct rate conversion 2-12
maintaining a constant frame rate 2-13
maintaining a constant sample rate 2-25
related to sample period and frame

period 2-3
See also rate conversion

frame-based multichannel signals 1-16
See also signals

frame-based processing
benefits 2-51
latency 1-18

frame-based signals
benefits of 1-17
combining 1-39
concatenating 1-39
converting to other frame-based signals 2-42
creating 1-26
deconstructing multichannel signals 1-49
exporting 1-71
importing 1-68
importing and exporting 1-68
multichannel 1-16
reordering channels in a multichannel

signal 1-53

Index-4

Index

separating multichannel signals 1-49
single channel 1-15
unbuffering to sample-based signals 2-46

frame-matrices
format of 1-16

frame-rate adjustment
rate conversion 2-14

frame-size adjustment
rate conversion 2-16

frequencies 1-4
normalized 3-51
normalized linear 1-4
terminology 1-4
See also periods

frequency-domain data
displaying 4-9
transforming it into the time domain 4-14

G
generated code

generic real-time (GRT) 2-52

H
highpass filter designs

continuous-time 3-51
Hz (hertz) 1-4

defined 1-4
See also sample periods

I
IFFT block

using 4-14
importing

arrays 1-59
frame-based signals 1-68
pages of an array 1-59
sample-based matrices 1-59
sample-based signals 1-56

sample-based vector signals 1-56
importing and exporting

frame-based signals 1-68
sample-based signals 1-56

inherit via internal rule 8-26
inheriting sample periods 1-12
initial conditions

with basic algorithmic delay 2-55
input frame periods

defined 2-2
inspecting

frame periods 2-6
frame rates 2-9
sample periods 2-4
sample rates 2-8

intermediate product
fixed-point parameters 8-23

inversion of matrices 6-10

L
latency 2-58

due to frame-based processing 1-18
predicting 2-60
reducing 2-59
relation to delay 2-58

libraries
Statistics 6-2

line widths
displaying 2-14

linear algebra
solving linear systems 6-7

logging
fixed-point data types 8-37

lowpass filter designs
continuous-time 3-51

M
matrices

Index-5

Index

factoring 6-8
format of frame-based 1-16
inverting 6-10

maximum 6-2
mean 6-2
minimum 6-2
models

multirate 2-14
modes

tasking 2-59
modular arithmetic 8-10
multichannel

frame-based signals 1-39
sample-based signals 1-33

multichannel signals 1-13
See also signals

multiplication
fixed-point 8-13

multirate
blocks 2-59
demos 3-74
examples 3-74
models 2-60

multitasking mode 2-59

N
normalized frequencies 1-4

defined 1-4
See also frequencies

Nyquist frequency
defined 1-4

Nyquist rate 1-4

O
output

fixed-point parameters 8-25
output frame periods

defined 2-2
overflow

fixed-point parameter 8-22
overflow handling 8-7
overlapping buffers

causing unintentional rate conversions 2-25

P
padding 8-17
pages of an array

importing 1-59
parameters

Buffer overlap, negative values for 2-38
continuous-time filter 3-51
FFT length 2-22
normalized frequency 3-51

Partial Unbuffer block 2-27
partial unbuffering 2-25
passband ripple

analog filter 3-51
performance

improving 1-17
periods 1-3

defined 1-4
See also sample periods and frame periods

power spectrum estimation 6-6
precision

fixed-point data types 8-7
predicting

tasking latency 2-60
preventing unintended rate conversion 2-19
Probe block 2-4

Q
quantizers

scalar 5-2
vector 5-12

Index-6

Index

R
range

fixed-point data types 8-7
rate conversion 2-13

avoiding 2-19
avoiding rate-mismatch errors 1-8
blocks for 2-13
by unbuffering 2-46
direct 2-12
frame-rate adjustment 2-14
frame-size adjustment 2-16

rate types
block 2-59
model 2-60

rates 2-2
auto-promoting 1-10
See also sample periods and frame periods

Real-Time Workshop
generating generic real-time (GRT) code 2-52

rebuffering 2-25
altering the sample period of the signal 2-31
altering the signal 2-27
causing unintentional rate conversions 2-25
delay 2-45
preserving the sample period of the

signal 2-28
reducing

latency 2-59
reflection coefficients

identifying 5-4
reordering channels

in multichannel frame-based signals 1-53
residual signal

identifying 5-4
ripple

passband 3-51
rounding

fixed-point data types 8-8
fixed-point parameter 8-22

running

vector quantization model 5-14
running operations 6-4

S
sample frequency 1-4

definition 1-4
See also sample periods

sample modes 2-60
sample periods 1-3

altered by unbuffering 2-46
Buffer block 2-27
continuous-time 1-11
defined 1-3
for frame-based signals 2-2
inherited 1-12
maintaining constant 2-25
nonsource blocks 1-12
of source blocks 1-11
Rebuffer block 2-27
related to frame period and frame size 2-3
Simulink Probe block 2-4
See also frame periods and sample times

sample rates 1-4
auto-promoting 1-10
color coding 2-8
concepts 2-2
defined 1-3
inspecting 2-8
See also sample periods

sample time
of original time series parameter 2-25

sample times 1-3
defined 1-3
in Signal Processing Blockset 1-5
shifting with sample-time offsets 2-4
See also sample periods and frame periods

sample-based signals 1-13
combining multichannel signals 1-36
combining single-channel signals 1-33

Index-7

Index

concatenating multichannel signals 1-36
concatenating single-channel signals 1-33
converting to frame-based 2-35
converting to frame-based with overlap 2-38
creating 1-19
deconstructing multichannel signals 1-43
exporting 1-63
importing 1-56
importing and exporting 1-56
multichannel 1-33
single channel 1-13
splitting multichannel signals 1-43

samples
adding 2-25
deleting 2-25
rearranging 2-27

sampling 2-2
See also sample periods and frame periods

saturation 8-7
scalar quantizers 5-2

creating 5-6
scaling 8-6
separating

multichannel frame-based signals 1-49
sequences

defining a discrete-time signal 1-3
signals

benefits of frame-based 1-17
characteristics 1-4
continuous-time 1-11
converting frame-based to sample-based 2-46
definition of discrete-time 1-3
definition of frequency 1-4
discrete-time terminology 1-4
frame-based 1-16
inspecting the frame period of 2-6
inspecting the sample period of 2-4
multichannel 1-13
Nyquist frequency 1-4
Nyquist rate 1-4

sample-based 1-13
terminology 1-5

simulations
running from the command line 2-51

single channel signals
frame-based 1-15
sample-based 1-13

single-rate
blocks 2-59
models 2-60

single-tasking mode 2-59
size of a frame 2-12
sliding windows

example 6-3
solvers

fixed-step 1-7
variable-step 1-7

solving
linear systems 6-7

source blocks
defined 1-11
sample periods of 1-11

sources
sample periods of 1-11

speech
analysis and synthesis 5-2

splitting
multichannel frame-based signals into

individual signals 1-49
multichannel sample-based signals 1-43
multichannel sample-based signals into

individual signals 1-43
multichannel sample-based signals into

other multichannel signals 1-45
standard deviation 6-2
statistics

operations 6-2
Statistics library 6-2
stopband attenuation 3-51
symbols

Index-8

Index

time and frequency 1-4
system-level settings

fixed-point 8-37

T
tasking latency 2-58

example 2-60
predicting 2-60

tasking modes 2-59
terminology

sample time and sample period 1-5
time and frequency 1-4

throughput rates
increasing 1-17

time-domain data
displaying 4-2
transforming it into the frequency

domain 4-5
transforming

frequency-domain data 4-14
time-domain data 4-5

two’s complement 8-11

U
unbuffering 2-46

and rate conversion 2-46
partial 2-25
to a sample-based signal 2-26

units of time and frequency measures 1-4

upsampling 2-14
See also rate conversion

using
the FFT block 4-5
the IFFT block 4-14

V
variable-step solver 1-7
vector quantizers 5-12

configuring the model 5-14
creating 5-12
running the model 5-14

viewing
frequency-domain data 4-9
time-domain data 4-2

W
wrapping

fixed-point data types 8-7

Z
zero algorithmic delay 2-52
Zero-Order Hold block 1-11
zero-padding 2-23

causing unintentional rate conversions 2-25
zeros

padding with 2-27

Index-9

	toc
	Working with Signals
	Discrete-Time Signals
	Time and Frequency Terminology
	Recommended Settings for Discrete-Time Simulations
	Other Settings for Discrete-Time Simulations
	Cross-Rate Operations

	Continuous-Time Signals
	Continuous-Time Source Blocks
	Continuous-Time Nonsource Blocks

	Sample-Based Signals
	Sample-Based Single Channel Signals
	Sample-Based Multichannel Signals

	Frame-Based Signals
	Frame-Based Single Channel Signals
	Frame-Based Multichannel Signals
	Benefits of Frame-Based Processing
	Accelerating Real-Time Systems
	Accelerating Simulations

	Creating Sample-Based Signals
	Using the DSP Constant Block
	Creating a 1-D Vector Signal

	Using the Signal from Workspace Block

	Creating Frame-Based Signals
	Using the Sine Wave Block
	Using the Signal from Workspace Block

	Creating Multichannel Sample-Based Signals
	Combining Single-Channel Sample-Based Signals
	Combining Multichannel Sample-Based Signals

	Creating Multichannel Frame-Based Signals
	Combining Frame-Based Signals

	Deconstructing Multichannel Sample-Based Signals
	Splitting Multichannel Sample-Based Signals into Individual Sign
	Splitting Multichannel Sample-Based Signals into Several Multich

	Deconstructing Multichannel Frame-Based Signals
	Splitting Multichannel Frame-Based Signals into Individual Signa
	Reordering Channels in Multichannel Frame-Based Signals

	Importing and Exporting Sample-Based Signals
	Importing Sample-Based Vector Signals
	Importing Sample-Based Matrix Signals
	Exporting Sample-Based Signals

	Importing and Exporting Frame-Based Signals
	Importing Frame-Based Signals
	Exporting Frame-Based Signals

	Advanced Signal Concepts
	Inspecting Sample Rates and Frame Rates
	Sample Rate and Frame Rate Concepts
	Inspecting Sample-Based Signals Using the Probe Block
	Inspecting Frame-Based Signals Using the Probe Block
	Inspecting Sample-Based Signals Using Color Coding
	Inspecting Frame-Based Signals Using Color Coding

	Converting Sample and Frame Rates
	Rate Conversion Blocks
	Direct Rate Conversion

	Rate Conversion by Frame-Rate Adjustment
	Rate Conversion by Frame-Size Adjustment
	Avoiding Unintended Rate Conversion
	Frame Rebuffering Blocks
	Blocks for Frame Rebuffering with Preservation of the Signal
	Blocks for Frame Rebuffering with Alteration of the Signal

	Buffering with Preservation of the Signal
	Buffering with Alteration of the Signal

	Converting Frame Status
	Buffering Sample-Based Signals into Frame-Based Signals
	Buffering Sample-Based Signals into Frame-Based Signals with Ove
	Buffering Frame-Based Signals into Other Frame-Based Signals
	Buffering Delay and Initial Conditions
	Unbuffering Frame-Based Signals into Sample-Based Signals

	Delay and Latency
	Computational Delay
	Reducing Computational Delay

	Algorithmic Delay
	Zero Algorithmic Delay
	Zero Algorithmic Delay and Algebraic Loops

	Basic Algorithmic Delay
	Excess Algorithmic Delay (Tasking Latency)
	Simulink Tasking Mode
	Block Rate Type
	Model Rate Type
	Block Sample Mode

	Predicting Tasking Latency

	Filters
	Digital Filter Block
	Implementing a Lowpass Filter
	Implementing a Highpass Filter
	Filtering High-Frequency Noise
	Specifying Static Filters
	Tuning the Filter Coefficient Values During Simulation

	Specifying Time-Varying Filters
	Setting the Coefficient Update Rate
	Providing Filter Coefficient Vectors at Block Input Ports
	Removing the a0 Term in the Filter Structure

	Specifying the SOS Matrix (Biquadratic Filter Coefficients)

	Digital Filter Design Block
	Overview of the Digital Filter Design Block
	Filter Design and Analysis
	Filter Implementation
	Saving, Exporting, and Importing Filters

	Choosing Between Filter Design Blocks
	Similarities
	Differences
	When to Use Each Block

	Creating a Lowpass Filter
	Creating a Highpass Filter
	Filtering High-Frequency Noise

	Filter Realization Wizard
	Designing and Implementing a Fixed-Point Filter
	Part 1 — Creating a Signal with Added Noise
	Part 2 — Creating a Fixed-Point Filter with the Filter Realizati
	Part 3 — Building a Model to Filter a Signal
	Part 4 — Looking at Filtering Results

	Setting the Filter Structure and Number of Filter Sections
	Optimizing the Filter Structure

	Analog Filter Design Block
	Adaptive Filters
	Creating an Acoustic Environment
	Creating an Adaptive Filter
	Customizing an Adaptive Filter
	Adaptive Filtering Demos
	Opening Demos

	Multirate Filters
	Filter Banks
	Dyadic Analysis Filter Banks
	Dyadic Synthesis Filter Banks

	Multirate Filtering Examples

	Transforms
	Signals in the Time Domain
	Displaying Time-Domain Data
	Transforming Time-Domain Data into the Frequency Domain

	Signals in the Frequency-Domain
	Displaying Frequency-Domain Data
	Transforming Frequency-Domain Data into the Time Domain

	Linear and Bit-Reversed Output Order
	Finding the Bit-Reversed Order of Your Frequency Indices

	Quantizers
	Scalar Quantizers
	Analysis and Synthesis of Speech
	Identifying Your Residual Signal and Reflection Coefficients
	Creating a Scalar Quantizer

	Vector Quantizers
	Building Your Vector Quantizer Model
	Configuring and Running Your Model

	Statistics, Estimation, and Linear Algebra
	Statistics
	Basic Operations
	Example: Sliding Windows

	Running Operations

	Power Spectrum Estimation
	Linear Algebra
	Linear System Solvers
	Example: LU Solver

	Matrix Factorizations
	Example: LU Factorization

	Matrix Inverses
	Example: LU Inverse

	Data Type Support
	Supported Data Types and How to Convert to Them
	Block Data Type Support Table
	Code Generation Notes

	Viewing Data Types of Signals In Models
	Boolean Support
	Advantages of Using the Boolean Data Type
	Lists of Blocks Supporting Boolean Inputs or Outputs
	Effects of Enabling and Disabling Boolean Support
	Steps to Disabling Boolean Support
	Step 1: Open the Configuration Parameters Dialog Box
	Step 2: Disable the Boolean Data Type in the Advanced Tab
	Step 3: (Optional) Verify Data Types of Signals

	Working with Fixed-Point Data
	Fixed-Point Signal Processing Development
	Benefits of Fixed-Point Hardware
	Benefits of Fixed-Point Design with Signal Processing Blockset
	Fixed-Point Signal Processing Applications

	Concepts and Terminology
	Fixed-Point Data Types
	Scaling
	Precision and Range
	Range
	Precision

	Arithmetic Operations
	Modulo Arithmetic
	Two's Complement
	Addition and Subtraction
	Multiplication
	Multiplication Data Types

	Casts
	Casts to the Accumulator Data Type
	Casts to the Intermediate Product or Product Output Data Type
	Casts to the Output Data Type
	Casting Examples
	Casting from a Shorter Data Type to a Longer Data Type . Conside
	Casting from a Longer Data Type to a Shorter Data Type . Conside

	Specifying Fixed-Point Attributes
	Setting Block Parameters
	Rounding Mode Parameter
	Overflow Mode Parameter
	Intermediate Product Parameters
	Product Output Parameters
	Accumulator Parameters
	Output Parameters

	Inherit via Internal Rule
	Internal Rule for Accumulator Data Types
	Internal Rule for Product Data Types
	Internal Rule for Output Data Types
	The Effect of the Hardware Implementation Pane on the Internal R
	Internal Rule Examples

	Specifying System-Level Settings
	Logging
	Autoscaling
	Data type override

	Fixed-Point Filtering
	Filter Implementation Blocks
	Filter Design and Implementation Blocks

	Index

	tables
	Length Requirements for Time-Varying Filter Coefficient Vectors
	Rate Requirements for Time-Varying Filter Coefficient Vectors
	Parameter Settings for the Other Blocks
	Notable Characteristics of Asymmetric and Symmetric Dyadic Analy
	Notable Characteristics of Asymmetric and Symmetric Dyadic Synth
	Supported Data Types and How to Convert to Them

